ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemopu Unicode version

Theorem caucvgprprlemopu 7700
Description: Lemma for caucvgprpr 7713. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemopu  |-  ( (
ph  /\  t  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q 
t  /\  s  e.  ( 2nd `  L ) ) )
Distinct variable groups:    A, m    m, F    F, l, r, s   
u, F, r, s    L, s    p, l, q, t, r, s    u, p, q, t    ph, r,
s
Allowed substitution hints:    ph( u, t, k, m, n, q, p, l)    A( u, t, k, n, s, r, q, p, l)    F( t, k, n, q, p)    L( u, t, k, m, n, r, q, p, l)

Proof of Theorem caucvgprprlemopu
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 caucvgprpr.lim . . . . 5  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
21caucvgprprlemelu 7687 . . . 4  |-  ( t  e.  ( 2nd `  L
)  <->  ( t  e. 
Q.  /\  E. b  e.  N.  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  t } ,  { q  |  t 
<Q  q } >. )
)
32simprbi 275 . . 3  |-  ( t  e.  ( 2nd `  L
)  ->  E. b  e.  N.  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  t } ,  { q  |  t 
<Q  q } >. )
43adantl 277 . 2  |-  ( (
ph  /\  t  e.  ( 2nd `  L ) )  ->  E. b  e.  N.  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  t } ,  { q  |  t 
<Q  q } >. )
5 simprr 531 . . . . 5  |-  ( ( ( ph  /\  t  e.  ( 2nd `  L
) )  /\  (
b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  ->  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >. )
6 caucvgprpr.f . . . . . . . . 9  |-  ( ph  ->  F : N. --> P. )
76ffvelcdmda 5653 . . . . . . . 8  |-  ( (
ph  /\  b  e.  N. )  ->  ( F `
 b )  e. 
P. )
8 recnnpr 7549 . . . . . . . . 9  |-  ( b  e.  N.  ->  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
98adantl 277 . . . . . . . 8  |-  ( (
ph  /\  b  e.  N. )  ->  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >.  e.  P. )
10 addclpr 7538 . . . . . . . 8  |-  ( ( ( F `  b
)  e.  P.  /\  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >.  e. 
P. )  ->  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P. )
117, 9, 10syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  b  e.  N. )  ->  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  e.  P. )
1211ad2ant2r 509 . . . . . 6  |-  ( ( ( ph  /\  t  e.  ( 2nd `  L
) )  /\  (
b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  ->  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  e.  P. )
132simplbi 274 . . . . . . . 8  |-  ( t  e.  ( 2nd `  L
)  ->  t  e.  Q. )
1413ad2antlr 489 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  ( 2nd `  L
) )  /\  (
b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  ->  t  e.  Q. )
15 nqprlu 7548 . . . . . . 7  |-  ( t  e.  Q.  ->  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >.  e.  P. )
1614, 15syl 14 . . . . . 6  |-  ( ( ( ph  /\  t  e.  ( 2nd `  L
) )  /\  (
b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  ->  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >.  e.  P. )
17 ltdfpr 7507 . . . . . 6  |-  ( ( ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P.  /\  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >.  e.  P. )  -> 
( ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  t } ,  { q  |  t 
<Q  q } >.  <->  E. s  e.  Q.  ( s  e.  ( 2nd `  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  /\  s  e.  ( 1st `  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >. ) ) ) )
1812, 16, 17syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  t  e.  ( 2nd `  L
) )  /\  (
b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  ->  ( (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >.  <->  E. s  e.  Q.  ( s  e.  ( 2nd `  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  /\  s  e.  ( 1st `  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >. ) ) ) )
195, 18mpbid 147 . . . 4  |-  ( ( ( ph  /\  t  e.  ( 2nd `  L
) )  /\  (
b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  ->  E. s  e.  Q.  ( s  e.  ( 2nd `  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  /\  s  e.  ( 1st `  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >. ) ) )
20 simpr 110 . . . . . . . 8  |-  ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  ->  s  e. 
Q. )
2112adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  ->  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  e.  P. )
22 nqpru 7553 . . . . . . . 8  |-  ( ( s  e.  Q.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  e.  P. )  ->  (
s  e.  ( 2nd `  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  <->  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  s } ,  { q  |  s 
<Q  q } >. )
)
2320, 21, 22syl2anc 411 . . . . . . 7  |-  ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  ->  ( s  e.  ( 2nd `  (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  <->  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  s } ,  { q  |  s 
<Q  q } >. )
)
24 vex 2742 . . . . . . . . 9  |-  s  e. 
_V
25 breq1 4008 . . . . . . . . 9  |-  ( p  =  s  ->  (
p  <Q  t  <->  s  <Q  t ) )
26 ltnqex 7550 . . . . . . . . . 10  |-  { p  |  p  <Q  t }  e.  _V
27 gtnqex 7551 . . . . . . . . . 10  |-  { q  |  t  <Q  q }  e.  _V
2826, 27op1st 6149 . . . . . . . . 9  |-  ( 1st `  <. { p  |  p  <Q  t } ,  { q  |  t 
<Q  q } >. )  =  { p  |  p 
<Q  t }
2924, 25, 28elab2 2887 . . . . . . . 8  |-  ( s  e.  ( 1st `  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >. )  <->  s  <Q  t )
3029a1i 9 . . . . . . 7  |-  ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  ->  ( s  e.  ( 1st `  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >. )  <->  s  <Q  t ) )
3123, 30anbi12d 473 . . . . . 6  |-  ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  ->  ( ( s  e.  ( 2nd `  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  /\  s  e.  ( 1st `  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >. ) )  <->  ( (
( F `  b
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t ) ) )
3231biimpd 144 . . . . 5  |-  ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  ->  ( ( s  e.  ( 2nd `  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  /\  s  e.  ( 1st `  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >. ) )  ->  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t ) ) )
3332reximdva 2579 . . . 4  |-  ( ( ( ph  /\  t  e.  ( 2nd `  L
) )  /\  (
b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  ->  ( E. s  e.  Q.  (
s  e.  ( 2nd `  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )
)  /\  s  e.  ( 1st `  <. { p  |  p  <Q  t } ,  { q  |  t  <Q  q } >. ) )  ->  E. s  e.  Q.  ( ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  s } ,  { q  |  s  <Q  q } >.  /\  s  <Q  t
) ) )
3419, 33mpd 13 . . 3  |-  ( ( ( ph  /\  t  e.  ( 2nd `  L
) )  /\  (
b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  ->  E. s  e.  Q.  ( ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  s } ,  { q  |  s  <Q  q } >.  /\  s  <Q  t
) )
35 simprr 531 . . . . . 6  |-  ( ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  /\  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t ) )  -> 
s  <Q  t )
36 simplr 528 . . . . . . 7  |-  ( ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  /\  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t ) )  -> 
s  e.  Q. )
37 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  ->  b  e. 
N. )
3837adantr 276 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  /\  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t ) )  -> 
b  e.  N. )
39 simprl 529 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  /\  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t ) )  -> 
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )
40 fveq2 5517 . . . . . . . . . . 11  |-  ( r  =  b  ->  ( F `  r )  =  ( F `  b ) )
41 opeq1 3780 . . . . . . . . . . . . . . . 16  |-  ( r  =  b  ->  <. r ,  1o >.  =  <. b ,  1o >. )
4241eceq1d 6573 . . . . . . . . . . . . . . 15  |-  ( r  =  b  ->  [ <. r ,  1o >. ]  ~Q  =  [ <. b ,  1o >. ]  ~Q  )
4342fveq2d 5521 . . . . . . . . . . . . . 14  |-  ( r  =  b  ->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )
4443breq2d 4017 . . . . . . . . . . . . 13  |-  ( r  =  b  ->  (
p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <->  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) ) )
4544abbidv 2295 . . . . . . . . . . . 12  |-  ( r  =  b  ->  { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) }  =  { p  |  p  <Q  ( *Q
`  [ <. b ,  1o >. ]  ~Q  ) } )
4643breq1d 4015 . . . . . . . . . . . . 13  |-  ( r  =  b  ->  (
( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q  <->  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q ) )
4746abbidv 2295 . . . . . . . . . . . 12  |-  ( r  =  b  ->  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q }  =  {
q  |  ( *Q
`  [ <. b ,  1o >. ]  ~Q  )  <Q  q } )
4845, 47opeq12d 3788 . . . . . . . . . . 11  |-  ( r  =  b  ->  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >.  =  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )
4940, 48oveq12d 5895 . . . . . . . . . 10  |-  ( r  =  b  ->  (
( F `  r
)  +P.  <. { p  |  p  <Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  =  ( ( F `
 b )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) )
5049breq1d 4015 . . . . . . . . 9  |-  ( r  =  b  ->  (
( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  <->  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  s } ,  { q  |  s  <Q  q } >. ) )
5150rspcev 2843 . . . . . . . 8  |-  ( ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )  ->  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )
5238, 39, 51syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  /\  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t ) )  ->  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >. )
531caucvgprprlemelu 7687 . . . . . . 7  |-  ( s  e.  ( 2nd `  L
)  <->  ( s  e. 
Q.  /\  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  s } ,  { q  |  s 
<Q  q } >. )
)
5436, 52, 53sylanbrc 417 . . . . . 6  |-  ( ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  /\  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t ) )  -> 
s  e.  ( 2nd `  L ) )
5535, 54jca 306 . . . . 5  |-  ( ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  /\  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t ) )  -> 
( s  <Q  t  /\  s  e.  ( 2nd `  L ) ) )
5655ex 115 . . . 4  |-  ( ( ( ( ph  /\  t  e.  ( 2nd `  L ) )  /\  ( b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  /\  s  e.  Q. )  ->  ( ( ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t )  ->  (
s  <Q  t  /\  s  e.  ( 2nd `  L
) ) ) )
5756reximdva 2579 . . 3  |-  ( ( ( ph  /\  t  e.  ( 2nd `  L
) )  /\  (
b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  ->  ( E. s  e.  Q.  (
( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  s } ,  {
q  |  s  <Q 
q } >.  /\  s  <Q  t )  ->  E. s  e.  Q.  ( s  <Q 
t  /\  s  e.  ( 2nd `  L ) ) ) )
5834, 57mpd 13 . 2  |-  ( ( ( ph  /\  t  e.  ( 2nd `  L
) )  /\  (
b  e.  N.  /\  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  t } ,  {
q  |  t  <Q 
q } >. )
)  ->  E. s  e.  Q.  ( s  <Q 
t  /\  s  e.  ( 2nd `  L ) ) )
594, 58rexlimddv 2599 1  |-  ( (
ph  /\  t  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q 
t  /\  s  e.  ( 2nd `  L ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   E.wrex 2456   {crab 2459   <.cop 3597   class class class wbr 4005   -->wf 5214   ` cfv 5218  (class class class)co 5877   1stc1st 6141   2ndc2nd 6142   1oc1o 6412   [cec 6535   N.cnpi 7273    <N clti 7276    ~Q ceq 7280   Q.cnq 7281    +Q cplq 7283   *Qcrq 7285    <Q cltq 7286   P.cnp 7292    +P. cpp 7294    <P cltp 7296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-iplp 7469  df-iltp 7471
This theorem is referenced by:  caucvgprprlemrnd  7702
  Copyright terms: Public domain W3C validator