| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemopu | Unicode version | ||
| Description: Lemma for caucvgprpr 7825. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.) |
| Ref | Expression |
|---|---|
| caucvgprpr.f |
|
| caucvgprpr.cau |
|
| caucvgprpr.bnd |
|
| caucvgprpr.lim |
|
| Ref | Expression |
|---|---|
| caucvgprprlemopu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgprpr.lim |
. . . . 5
| |
| 2 | 1 | caucvgprprlemelu 7799 |
. . . 4
|
| 3 | 2 | simprbi 275 |
. . 3
|
| 4 | 3 | adantl 277 |
. 2
|
| 5 | simprr 531 |
. . . . 5
| |
| 6 | caucvgprpr.f |
. . . . . . . . 9
| |
| 7 | 6 | ffvelcdmda 5715 |
. . . . . . . 8
|
| 8 | recnnpr 7661 |
. . . . . . . . 9
| |
| 9 | 8 | adantl 277 |
. . . . . . . 8
|
| 10 | addclpr 7650 |
. . . . . . . 8
| |
| 11 | 7, 9, 10 | syl2anc 411 |
. . . . . . 7
|
| 12 | 11 | ad2ant2r 509 |
. . . . . 6
|
| 13 | 2 | simplbi 274 |
. . . . . . . 8
|
| 14 | 13 | ad2antlr 489 |
. . . . . . 7
|
| 15 | nqprlu 7660 |
. . . . . . 7
| |
| 16 | 14, 15 | syl 14 |
. . . . . 6
|
| 17 | ltdfpr 7619 |
. . . . . 6
| |
| 18 | 12, 16, 17 | syl2anc 411 |
. . . . 5
|
| 19 | 5, 18 | mpbid 147 |
. . . 4
|
| 20 | simpr 110 |
. . . . . . . 8
| |
| 21 | 12 | adantr 276 |
. . . . . . . 8
|
| 22 | nqpru 7665 |
. . . . . . . 8
| |
| 23 | 20, 21, 22 | syl2anc 411 |
. . . . . . 7
|
| 24 | vex 2775 |
. . . . . . . . 9
| |
| 25 | breq1 4047 |
. . . . . . . . 9
| |
| 26 | ltnqex 7662 |
. . . . . . . . . 10
| |
| 27 | gtnqex 7663 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | op1st 6232 |
. . . . . . . . 9
|
| 29 | 24, 25, 28 | elab2 2921 |
. . . . . . . 8
|
| 30 | 29 | a1i 9 |
. . . . . . 7
|
| 31 | 23, 30 | anbi12d 473 |
. . . . . 6
|
| 32 | 31 | biimpd 144 |
. . . . 5
|
| 33 | 32 | reximdva 2608 |
. . . 4
|
| 34 | 19, 33 | mpd 13 |
. . 3
|
| 35 | simprr 531 |
. . . . . 6
| |
| 36 | simplr 528 |
. . . . . . 7
| |
| 37 | simplrl 535 |
. . . . . . . . 9
| |
| 38 | 37 | adantr 276 |
. . . . . . . 8
|
| 39 | simprl 529 |
. . . . . . . 8
| |
| 40 | fveq2 5576 |
. . . . . . . . . . 11
| |
| 41 | opeq1 3819 |
. . . . . . . . . . . . . . . 16
| |
| 42 | 41 | eceq1d 6656 |
. . . . . . . . . . . . . . 15
|
| 43 | 42 | fveq2d 5580 |
. . . . . . . . . . . . . 14
|
| 44 | 43 | breq2d 4056 |
. . . . . . . . . . . . 13
|
| 45 | 44 | abbidv 2323 |
. . . . . . . . . . . 12
|
| 46 | 43 | breq1d 4054 |
. . . . . . . . . . . . 13
|
| 47 | 46 | abbidv 2323 |
. . . . . . . . . . . 12
|
| 48 | 45, 47 | opeq12d 3827 |
. . . . . . . . . . 11
|
| 49 | 40, 48 | oveq12d 5962 |
. . . . . . . . . 10
|
| 50 | 49 | breq1d 4054 |
. . . . . . . . 9
|
| 51 | 50 | rspcev 2877 |
. . . . . . . 8
|
| 52 | 38, 39, 51 | syl2anc 411 |
. . . . . . 7
|
| 53 | 1 | caucvgprprlemelu 7799 |
. . . . . . 7
|
| 54 | 36, 52, 53 | sylanbrc 417 |
. . . . . 6
|
| 55 | 35, 54 | jca 306 |
. . . . 5
|
| 56 | 55 | ex 115 |
. . . 4
|
| 57 | 56 | reximdva 2608 |
. . 3
|
| 58 | 34, 57 | mpd 13 |
. 2
|
| 59 | 4, 58 | rexlimddv 2628 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-eprel 4336 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-1o 6502 df-2o 6503 df-oadd 6506 df-omul 6507 df-er 6620 df-ec 6622 df-qs 6626 df-ni 7417 df-pli 7418 df-mi 7419 df-lti 7420 df-plpq 7457 df-mpq 7458 df-enq 7460 df-nqqs 7461 df-plqqs 7462 df-mqqs 7463 df-1nqqs 7464 df-rq 7465 df-ltnqqs 7466 df-enq0 7537 df-nq0 7538 df-0nq0 7539 df-plq0 7540 df-mq0 7541 df-inp 7579 df-iplp 7581 df-iltp 7583 |
| This theorem is referenced by: caucvgprprlemrnd 7814 |
| Copyright terms: Public domain | W3C validator |