| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caucvgprprlemopu | Unicode version | ||
| Description: Lemma for caucvgprpr 7899. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.) |
| Ref | Expression |
|---|---|
| caucvgprpr.f |
|
| caucvgprpr.cau |
|
| caucvgprpr.bnd |
|
| caucvgprpr.lim |
|
| Ref | Expression |
|---|---|
| caucvgprprlemopu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgprpr.lim |
. . . . 5
| |
| 2 | 1 | caucvgprprlemelu 7873 |
. . . 4
|
| 3 | 2 | simprbi 275 |
. . 3
|
| 4 | 3 | adantl 277 |
. 2
|
| 5 | simprr 531 |
. . . . 5
| |
| 6 | caucvgprpr.f |
. . . . . . . . 9
| |
| 7 | 6 | ffvelcdmda 5770 |
. . . . . . . 8
|
| 8 | recnnpr 7735 |
. . . . . . . . 9
| |
| 9 | 8 | adantl 277 |
. . . . . . . 8
|
| 10 | addclpr 7724 |
. . . . . . . 8
| |
| 11 | 7, 9, 10 | syl2anc 411 |
. . . . . . 7
|
| 12 | 11 | ad2ant2r 509 |
. . . . . 6
|
| 13 | 2 | simplbi 274 |
. . . . . . . 8
|
| 14 | 13 | ad2antlr 489 |
. . . . . . 7
|
| 15 | nqprlu 7734 |
. . . . . . 7
| |
| 16 | 14, 15 | syl 14 |
. . . . . 6
|
| 17 | ltdfpr 7693 |
. . . . . 6
| |
| 18 | 12, 16, 17 | syl2anc 411 |
. . . . 5
|
| 19 | 5, 18 | mpbid 147 |
. . . 4
|
| 20 | simpr 110 |
. . . . . . . 8
| |
| 21 | 12 | adantr 276 |
. . . . . . . 8
|
| 22 | nqpru 7739 |
. . . . . . . 8
| |
| 23 | 20, 21, 22 | syl2anc 411 |
. . . . . . 7
|
| 24 | vex 2802 |
. . . . . . . . 9
| |
| 25 | breq1 4086 |
. . . . . . . . 9
| |
| 26 | ltnqex 7736 |
. . . . . . . . . 10
| |
| 27 | gtnqex 7737 |
. . . . . . . . . 10
| |
| 28 | 26, 27 | op1st 6292 |
. . . . . . . . 9
|
| 29 | 24, 25, 28 | elab2 2951 |
. . . . . . . 8
|
| 30 | 29 | a1i 9 |
. . . . . . 7
|
| 31 | 23, 30 | anbi12d 473 |
. . . . . 6
|
| 32 | 31 | biimpd 144 |
. . . . 5
|
| 33 | 32 | reximdva 2632 |
. . . 4
|
| 34 | 19, 33 | mpd 13 |
. . 3
|
| 35 | simprr 531 |
. . . . . 6
| |
| 36 | simplr 528 |
. . . . . . 7
| |
| 37 | simplrl 535 |
. . . . . . . . 9
| |
| 38 | 37 | adantr 276 |
. . . . . . . 8
|
| 39 | simprl 529 |
. . . . . . . 8
| |
| 40 | fveq2 5627 |
. . . . . . . . . . 11
| |
| 41 | opeq1 3857 |
. . . . . . . . . . . . . . . 16
| |
| 42 | 41 | eceq1d 6716 |
. . . . . . . . . . . . . . 15
|
| 43 | 42 | fveq2d 5631 |
. . . . . . . . . . . . . 14
|
| 44 | 43 | breq2d 4095 |
. . . . . . . . . . . . 13
|
| 45 | 44 | abbidv 2347 |
. . . . . . . . . . . 12
|
| 46 | 43 | breq1d 4093 |
. . . . . . . . . . . . 13
|
| 47 | 46 | abbidv 2347 |
. . . . . . . . . . . 12
|
| 48 | 45, 47 | opeq12d 3865 |
. . . . . . . . . . 11
|
| 49 | 40, 48 | oveq12d 6019 |
. . . . . . . . . 10
|
| 50 | 49 | breq1d 4093 |
. . . . . . . . 9
|
| 51 | 50 | rspcev 2907 |
. . . . . . . 8
|
| 52 | 38, 39, 51 | syl2anc 411 |
. . . . . . 7
|
| 53 | 1 | caucvgprprlemelu 7873 |
. . . . . . 7
|
| 54 | 36, 52, 53 | sylanbrc 417 |
. . . . . 6
|
| 55 | 35, 54 | jca 306 |
. . . . 5
|
| 56 | 55 | ex 115 |
. . . 4
|
| 57 | 56 | reximdva 2632 |
. . 3
|
| 58 | 34, 57 | mpd 13 |
. 2
|
| 59 | 4, 58 | rexlimddv 2653 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-1o 6562 df-2o 6563 df-oadd 6566 df-omul 6567 df-er 6680 df-ec 6682 df-qs 6686 df-ni 7491 df-pli 7492 df-mi 7493 df-lti 7494 df-plpq 7531 df-mpq 7532 df-enq 7534 df-nqqs 7535 df-plqqs 7536 df-mqqs 7537 df-1nqqs 7538 df-rq 7539 df-ltnqqs 7540 df-enq0 7611 df-nq0 7612 df-0nq0 7613 df-plq0 7614 df-mq0 7615 df-inp 7653 df-iplp 7655 df-iltp 7657 |
| This theorem is referenced by: caucvgprprlemrnd 7888 |
| Copyright terms: Public domain | W3C validator |