ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnqpr Unicode version

Theorem ltnqpr 7706
Description: We can order fractions via  <Q or  <P. (Contributed by Jim Kingdon, 19-Jun-2021.)
Assertion
Ref Expression
ltnqpr  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)
Distinct variable groups:    A, l    u, A    B, l    u, B

Proof of Theorem ltnqpr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ltbtwnnqq 7528 . 2  |-  ( A 
<Q  B  <->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
2 nqprlu 7660 . . . 4  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
3 nqprlu 7660 . . . 4  |-  ( B  e.  Q.  ->  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  e.  P. )
4 ltdfpr 7619 . . . 4  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  e.  P.  /\ 
<. { l  |  l 
<Q  B } ,  {
u  |  B  <Q  u } >.  e.  P. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) ) )
52, 3, 4syl2an 289 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) ) )
6 vex 2775 . . . . . 6  |-  x  e. 
_V
7 breq2 4048 . . . . . 6  |-  ( u  =  x  ->  ( A  <Q  u  <->  A  <Q  x ) )
8 ltnqex 7662 . . . . . . 7  |-  { l  |  l  <Q  A }  e.  _V
9 gtnqex 7663 . . . . . . 7  |-  { u  |  A  <Q  u }  e.  _V
108, 9op2nd 6233 . . . . . 6  |-  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  =  { u  |  A  <Q  u }
116, 7, 10elab2 2921 . . . . 5  |-  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  <->  A  <Q  x )
12 breq1 4047 . . . . . 6  |-  ( l  =  x  ->  (
l  <Q  B  <->  x  <Q  B ) )
13 ltnqex 7662 . . . . . . 7  |-  { l  |  l  <Q  B }  e.  _V
14 gtnqex 7663 . . . . . . 7  |-  { u  |  B  <Q  u }  e.  _V
1513, 14op1st 6232 . . . . . 6  |-  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  =  { l  |  l 
<Q  B }
166, 12, 15elab2 2921 . . . . 5  |-  ( x  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  <->  x  <Q  B )
1711, 16anbi12i 460 . . . 4  |-  ( ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  <->  ( A  <Q  x  /\  x  <Q  B ) )
1817rexbii 2513 . . 3  |-  ( E. x  e.  Q.  (
x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  <->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
195, 18bitrdi 196 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  <->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
201, 19bitr4id 199 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2176   {cab 2191   E.wrex 2485   <.cop 3636   class class class wbr 4044   ` cfv 5271   1stc1st 6224   2ndc2nd 6225   Q.cnq 7393    <Q cltq 7398   P.cnp 7404    <P cltp 7408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-inp 7579  df-iltp 7583
This theorem is referenced by:  prplnqu  7733  ltrennb  7967
  Copyright terms: Public domain W3C validator