ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnqpr Unicode version

Theorem ltnqpr 7780
Description: We can order fractions via  <Q or  <P. (Contributed by Jim Kingdon, 19-Jun-2021.)
Assertion
Ref Expression
ltnqpr  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)
Distinct variable groups:    A, l    u, A    B, l    u, B

Proof of Theorem ltnqpr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ltbtwnnqq 7602 . 2  |-  ( A 
<Q  B  <->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
2 nqprlu 7734 . . . 4  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
3 nqprlu 7734 . . . 4  |-  ( B  e.  Q.  ->  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  e.  P. )
4 ltdfpr 7693 . . . 4  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  e.  P.  /\ 
<. { l  |  l 
<Q  B } ,  {
u  |  B  <Q  u } >.  e.  P. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) ) )
52, 3, 4syl2an 289 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) ) )
6 vex 2802 . . . . . 6  |-  x  e. 
_V
7 breq2 4087 . . . . . 6  |-  ( u  =  x  ->  ( A  <Q  u  <->  A  <Q  x ) )
8 ltnqex 7736 . . . . . . 7  |-  { l  |  l  <Q  A }  e.  _V
9 gtnqex 7737 . . . . . . 7  |-  { u  |  A  <Q  u }  e.  _V
108, 9op2nd 6293 . . . . . 6  |-  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  =  { u  |  A  <Q  u }
116, 7, 10elab2 2951 . . . . 5  |-  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  <->  A  <Q  x )
12 breq1 4086 . . . . . 6  |-  ( l  =  x  ->  (
l  <Q  B  <->  x  <Q  B ) )
13 ltnqex 7736 . . . . . . 7  |-  { l  |  l  <Q  B }  e.  _V
14 gtnqex 7737 . . . . . . 7  |-  { u  |  B  <Q  u }  e.  _V
1513, 14op1st 6292 . . . . . 6  |-  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  =  { l  |  l 
<Q  B }
166, 12, 15elab2 2951 . . . . 5  |-  ( x  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  <->  x  <Q  B )
1711, 16anbi12i 460 . . . 4  |-  ( ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  <->  ( A  <Q  x  /\  x  <Q  B ) )
1817rexbii 2537 . . 3  |-  ( E. x  e.  Q.  (
x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  <->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
195, 18bitrdi 196 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  <->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
201, 19bitr4id 199 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  B  <->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   {cab 2215   E.wrex 2509   <.cop 3669   class class class wbr 4083   ` cfv 5318   1stc1st 6284   2ndc2nd 6285   Q.cnq 7467    <Q cltq 7472   P.cnp 7478    <P cltp 7482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-pli 7492  df-mi 7493  df-lti 7494  df-plpq 7531  df-mpq 7532  df-enq 7534  df-nqqs 7535  df-plqqs 7536  df-mqqs 7537  df-1nqqs 7538  df-rq 7539  df-ltnqqs 7540  df-inp 7653  df-iltp 7657
This theorem is referenced by:  prplnqu  7807  ltrennb  8041
  Copyright terms: Public domain W3C validator