ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzpr Unicode version

Theorem fzpr 10273
Description: A finite interval of integers with two elements. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fzpr  |-  ( M  e.  ZZ  ->  ( M ... ( M  + 
1 ) )  =  { M ,  ( M  +  1 ) } )

Proof of Theorem fzpr
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 uzid 9736 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
2 elfzp1 10268 . . . . 5  |-  ( M  e.  ( ZZ>= `  M
)  ->  ( m  e.  ( M ... ( M  +  1 ) )  <->  ( m  e.  ( M ... M
)  \/  m  =  ( M  +  1 ) ) ) )
31, 2syl 14 . . . 4  |-  ( M  e.  ZZ  ->  (
m  e.  ( M ... ( M  + 
1 ) )  <->  ( m  e.  ( M ... M
)  \/  m  =  ( M  +  1 ) ) ) )
4 fzsn 10262 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
54eleq2d 2299 . . . . . 6  |-  ( M  e.  ZZ  ->  (
m  e.  ( M ... M )  <->  m  e.  { M } ) )
6 velsn 3683 . . . . . 6  |-  ( m  e.  { M }  <->  m  =  M )
75, 6bitrdi 196 . . . . 5  |-  ( M  e.  ZZ  ->  (
m  e.  ( M ... M )  <->  m  =  M ) )
87orbi1d 796 . . . 4  |-  ( M  e.  ZZ  ->  (
( m  e.  ( M ... M )  \/  m  =  ( M  +  1 ) )  <->  ( m  =  M  \/  m  =  ( M  +  1 ) ) ) )
93, 8bitrd 188 . . 3  |-  ( M  e.  ZZ  ->  (
m  e.  ( M ... ( M  + 
1 ) )  <->  ( m  =  M  \/  m  =  ( M  + 
1 ) ) ) )
10 vex 2802 . . . 4  |-  m  e. 
_V
1110elpr 3687 . . 3  |-  ( m  e.  { M , 
( M  +  1 ) }  <->  ( m  =  M  \/  m  =  ( M  + 
1 ) ) )
129, 11bitr4di 198 . 2  |-  ( M  e.  ZZ  ->  (
m  e.  ( M ... ( M  + 
1 ) )  <->  m  e.  { M ,  ( M  +  1 ) } ) )
1312eqrdv 2227 1  |-  ( M  e.  ZZ  ->  ( M ... ( M  + 
1 ) )  =  { M ,  ( M  +  1 ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   {csn 3666   {cpr 3667   ` cfv 5318  (class class class)co 6001   1c1 8000    + caddc 8002   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by:  fztp  10274  fzprval  10278  fz0to3un2pr  10319  fz0to4untppr  10320  fzo0to2pr  10424  fzo0to42pr  10426  gsumprval  13432
  Copyright terms: Public domain W3C validator