ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2sn Unicode version

Theorem en2sn 6964
Description: Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.)
Assertion
Ref Expression
en2sn  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { A }  ~~  { B } )

Proof of Theorem en2sn
StepHypRef Expression
1 ensn1g 6947 . 2  |-  ( A  e.  C  ->  { A }  ~~  1o )
2 ensn1g 6947 . . 3  |-  ( B  e.  D  ->  { B }  ~~  1o )
32ensymd 6933 . 2  |-  ( B  e.  D  ->  1o  ~~ 
{ B } )
4 entr 6934 . 2  |-  ( ( { A }  ~~  1o  /\  1o  ~~  { B } )  ->  { A }  ~~  { B }
)
51, 3, 4syl2an 289 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { A }  ~~  { B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   {csn 3666   class class class wbr 4082   1oc1o 6553    ~~ cen 6883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-1o 6560  df-er 6678  df-en 6886
This theorem is referenced by:  enpr2d  6970  fiunsnnn  7039  unsnfi  7077  frecfzennn  10643  hashsng  11015
  Copyright terms: Public domain W3C validator