ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2sn Unicode version

Theorem en2sn 6929
Description: Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.)
Assertion
Ref Expression
en2sn  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { A }  ~~  { B } )

Proof of Theorem en2sn
StepHypRef Expression
1 ensn1g 6912 . 2  |-  ( A  e.  C  ->  { A }  ~~  1o )
2 ensn1g 6912 . . 3  |-  ( B  e.  D  ->  { B }  ~~  1o )
32ensymd 6898 . 2  |-  ( B  e.  D  ->  1o  ~~ 
{ B } )
4 entr 6899 . 2  |-  ( ( { A }  ~~  1o  /\  1o  ~~  { B } )  ->  { A }  ~~  { B }
)
51, 3, 4syl2an 289 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { A }  ~~  { B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2178   {csn 3643   class class class wbr 4059   1oc1o 6518    ~~ cen 6848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-suc 4436  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-1o 6525  df-er 6643  df-en 6851
This theorem is referenced by:  enpr2d  6935  fiunsnnn  7004  unsnfi  7042  frecfzennn  10608  hashsng  10980
  Copyright terms: Public domain W3C validator