ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2sn Unicode version

Theorem en2sn 6881
Description: Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.)
Assertion
Ref Expression
en2sn  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { A }  ~~  { B } )

Proof of Theorem en2sn
StepHypRef Expression
1 ensn1g 6865 . 2  |-  ( A  e.  C  ->  { A }  ~~  1o )
2 ensn1g 6865 . . 3  |-  ( B  e.  D  ->  { B }  ~~  1o )
32ensymd 6851 . 2  |-  ( B  e.  D  ->  1o  ~~ 
{ B } )
4 entr 6852 . 2  |-  ( ( { A }  ~~  1o  /\  1o  ~~  { B } )  ->  { A }  ~~  { B }
)
51, 3, 4syl2an 289 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  { A }  ~~  { B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   {csn 3623   class class class wbr 4034   1oc1o 6476    ~~ cen 6806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-suc 4407  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-1o 6483  df-er 6601  df-en 6809
This theorem is referenced by:  enpr2d  6885  fiunsnnn  6951  unsnfi  6989  frecfzennn  10535  hashsng  10907
  Copyright terms: Public domain W3C validator