ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snfig Unicode version

Theorem snfig 6870
Description: A singleton is finite. For the proper class case, see snprc 3684. (Contributed by Jim Kingdon, 13-Apr-2020.)
Assertion
Ref Expression
snfig  |-  ( A  e.  V  ->  { A }  e.  Fin )

Proof of Theorem snfig
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 1onn 6575 . . 3  |-  1o  e.  om
2 ensn1g 6853 . . 3  |-  ( A  e.  V  ->  { A }  ~~  1o )
3 breq2 4034 . . . 4  |-  ( x  =  1o  ->  ( { A }  ~~  x  <->  { A }  ~~  1o ) )
43rspcev 2865 . . 3  |-  ( ( 1o  e.  om  /\  { A }  ~~  1o )  ->  E. x  e.  om  { A }  ~~  x
)
51, 2, 4sylancr 414 . 2  |-  ( A  e.  V  ->  E. x  e.  om  { A }  ~~  x )
6 isfi 6817 . 2  |-  ( { A }  e.  Fin  <->  E. x  e.  om  { A }  ~~  x )
75, 6sylibr 134 1  |-  ( A  e.  V  ->  { A }  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   E.wrex 2473   {csn 3619   class class class wbr 4030   omcom 4623   1oc1o 6464    ~~ cen 6794   Fincfn 6796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-1o 6471  df-en 6797  df-fin 6799
This theorem is referenced by:  fiprc  6871  ssfiexmid  6934  domfiexmid  6936  diffitest  6945  unfiexmid  6976  prfidisj  6985  tpfidisj  6986  ssfii  7035  infpwfidom  7260  hashsng  10872  fihashen1  10873  hashunsng  10881  hashprg  10882  hashdifsn  10893  hashdifpr  10894  hashxp  10900  fsumsplitsnun  11565  fsum2dlemstep  11580  fisumcom2  11584  fsumconst  11600  fsumge1  11607  fsum00  11608  hash2iun1dif1  11626  fprod2dlemstep  11768  fprodcom2fi  11772  fprodsplitsn  11779  fprodsplit1f  11780  phicl2  12355  lgsquadlem2  15235
  Copyright terms: Public domain W3C validator