| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snfig | Unicode version | ||
| Description: A singleton is finite. For the proper class case, see snprc 3731. (Contributed by Jim Kingdon, 13-Apr-2020.) |
| Ref | Expression |
|---|---|
| snfig |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6664 |
. . 3
| |
| 2 | ensn1g 6947 |
. . 3
| |
| 3 | breq2 4086 |
. . . 4
| |
| 4 | 3 | rspcev 2907 |
. . 3
|
| 5 | 1, 2, 4 | sylancr 414 |
. 2
|
| 6 | isfi 6910 |
. 2
| |
| 7 | 5, 6 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-1o 6560 df-en 6886 df-fin 6888 |
| This theorem is referenced by: fiprc 6966 ssfiexmid 7034 domfiexmid 7036 diffitest 7045 unfiexmid 7076 prfidisj 7085 prfidceq 7086 tpfidisj 7087 ssfii 7137 infpwfidom 7372 hashsng 11015 fihashen1 11016 hashunsng 11024 hashprg 11025 hashdifsn 11036 hashdifpr 11037 hashxp 11043 fsumsplitsnun 11925 fsum2dlemstep 11940 fisumcom2 11944 fsumconst 11960 fsumge1 11967 fsum00 11968 hash2iun1dif1 11986 fprod2dlemstep 12128 fprodcom2fi 12132 fprodsplitsn 12139 fprodsplit1f 12140 phicl2 12731 lgsquadlem2 15751 |
| Copyright terms: Public domain | W3C validator |