ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snfig Unicode version

Theorem snfig 6965
Description: A singleton is finite. For the proper class case, see snprc 3731. (Contributed by Jim Kingdon, 13-Apr-2020.)
Assertion
Ref Expression
snfig  |-  ( A  e.  V  ->  { A }  e.  Fin )

Proof of Theorem snfig
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 1onn 6664 . . 3  |-  1o  e.  om
2 ensn1g 6947 . . 3  |-  ( A  e.  V  ->  { A }  ~~  1o )
3 breq2 4086 . . . 4  |-  ( x  =  1o  ->  ( { A }  ~~  x  <->  { A }  ~~  1o ) )
43rspcev 2907 . . 3  |-  ( ( 1o  e.  om  /\  { A }  ~~  1o )  ->  E. x  e.  om  { A }  ~~  x
)
51, 2, 4sylancr 414 . 2  |-  ( A  e.  V  ->  E. x  e.  om  { A }  ~~  x )
6 isfi 6910 . 2  |-  ( { A }  e.  Fin  <->  E. x  e.  om  { A }  ~~  x )
75, 6sylibr 134 1  |-  ( A  e.  V  ->  { A }  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   E.wrex 2509   {csn 3666   class class class wbr 4082   omcom 4681   1oc1o 6553    ~~ cen 6883   Fincfn 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-1o 6560  df-en 6886  df-fin 6888
This theorem is referenced by:  fiprc  6966  ssfiexmid  7034  domfiexmid  7036  diffitest  7045  unfiexmid  7076  prfidisj  7085  prfidceq  7086  tpfidisj  7087  ssfii  7137  infpwfidom  7372  hashsng  11015  fihashen1  11016  hashunsng  11024  hashprg  11025  hashdifsn  11036  hashdifpr  11037  hashxp  11043  fsumsplitsnun  11925  fsum2dlemstep  11940  fisumcom2  11944  fsumconst  11960  fsumge1  11967  fsum00  11968  hash2iun1dif1  11986  fprod2dlemstep  12128  fprodcom2fi  12132  fprodsplitsn  12139  fprodsplit1f  12140  phicl2  12731  lgsquadlem2  15751
  Copyright terms: Public domain W3C validator