| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snfig | Unicode version | ||
| Description: A singleton is finite. For the proper class case, see snprc 3708. (Contributed by Jim Kingdon, 13-Apr-2020.) |
| Ref | Expression |
|---|---|
| snfig |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1onn 6629 |
. . 3
| |
| 2 | ensn1g 6912 |
. . 3
| |
| 3 | breq2 4063 |
. . . 4
| |
| 4 | 3 | rspcev 2884 |
. . 3
|
| 5 | 1, 2, 4 | sylancr 414 |
. 2
|
| 6 | isfi 6875 |
. 2
| |
| 7 | 5, 6 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-id 4358 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-1o 6525 df-en 6851 df-fin 6853 |
| This theorem is referenced by: fiprc 6931 ssfiexmid 6999 domfiexmid 7001 diffitest 7010 unfiexmid 7041 prfidisj 7050 prfidceq 7051 tpfidisj 7052 ssfii 7102 infpwfidom 7337 hashsng 10980 fihashen1 10981 hashunsng 10989 hashprg 10990 hashdifsn 11001 hashdifpr 11002 hashxp 11008 fsumsplitsnun 11845 fsum2dlemstep 11860 fisumcom2 11864 fsumconst 11880 fsumge1 11887 fsum00 11888 hash2iun1dif1 11906 fprod2dlemstep 12048 fprodcom2fi 12052 fprodsplitsn 12059 fprodsplit1f 12060 phicl2 12651 lgsquadlem2 15670 |
| Copyright terms: Public domain | W3C validator |