ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snfig Unicode version

Theorem snfig 6906
Description: A singleton is finite. For the proper class case, see snprc 3698. (Contributed by Jim Kingdon, 13-Apr-2020.)
Assertion
Ref Expression
snfig  |-  ( A  e.  V  ->  { A }  e.  Fin )

Proof of Theorem snfig
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 1onn 6606 . . 3  |-  1o  e.  om
2 ensn1g 6889 . . 3  |-  ( A  e.  V  ->  { A }  ~~  1o )
3 breq2 4048 . . . 4  |-  ( x  =  1o  ->  ( { A }  ~~  x  <->  { A }  ~~  1o ) )
43rspcev 2877 . . 3  |-  ( ( 1o  e.  om  /\  { A }  ~~  1o )  ->  E. x  e.  om  { A }  ~~  x
)
51, 2, 4sylancr 414 . 2  |-  ( A  e.  V  ->  E. x  e.  om  { A }  ~~  x )
6 isfi 6852 . 2  |-  ( { A }  e.  Fin  <->  E. x  e.  om  { A }  ~~  x )
75, 6sylibr 134 1  |-  ( A  e.  V  ->  { A }  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   E.wrex 2485   {csn 3633   class class class wbr 4044   omcom 4638   1oc1o 6495    ~~ cen 6825   Fincfn 6827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-id 4340  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-1o 6502  df-en 6828  df-fin 6830
This theorem is referenced by:  fiprc  6907  ssfiexmid  6973  domfiexmid  6975  diffitest  6984  unfiexmid  7015  prfidisj  7024  prfidceq  7025  tpfidisj  7026  ssfii  7076  infpwfidom  7306  hashsng  10943  fihashen1  10944  hashunsng  10952  hashprg  10953  hashdifsn  10964  hashdifpr  10965  hashxp  10971  fsumsplitsnun  11730  fsum2dlemstep  11745  fisumcom2  11749  fsumconst  11765  fsumge1  11772  fsum00  11773  hash2iun1dif1  11791  fprod2dlemstep  11933  fprodcom2fi  11937  fprodsplitsn  11944  fprodsplit1f  11945  phicl2  12536  lgsquadlem2  15555
  Copyright terms: Public domain W3C validator