Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snfig | Unicode version |
Description: A singleton is finite. For the proper class case, see snprc 3620. (Contributed by Jim Kingdon, 13-Apr-2020.) |
Ref | Expression |
---|---|
snfig |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1onn 6456 | . . 3 | |
2 | ensn1g 6731 | . . 3 | |
3 | breq2 3965 | . . . 4 | |
4 | 3 | rspcev 2813 | . . 3 |
5 | 1, 2, 4 | sylancr 411 | . 2 |
6 | isfi 6695 | . 2 | |
7 | 5, 6 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2125 wrex 2433 csn 3556 class class class wbr 3961 com 4543 c1o 6346 cen 6672 cfn 6674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-br 3962 df-opab 4022 df-id 4248 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-1o 6353 df-en 6675 df-fin 6677 |
This theorem is referenced by: fiprc 6749 ssfiexmid 6810 domfiexmid 6812 diffitest 6821 unfiexmid 6851 prfidisj 6860 tpfidisj 6861 ssfii 6907 infpwfidom 7112 hashsng 10649 fihashen1 10650 hashunsng 10658 hashprg 10659 hashdifsn 10670 hashdifpr 10671 hashxp 10677 fsumsplitsnun 11293 fsum2dlemstep 11308 fisumcom2 11312 fsumconst 11328 fsumge1 11335 fsum00 11336 hash2iun1dif1 11354 fprod2dlemstep 11496 fprodcom2fi 11500 fprodsplitsn 11507 fprodsplit1f 11508 phicl2 12058 |
Copyright terms: Public domain | W3C validator |