ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en2sn GIF version

Theorem en2sn 6869
Description: Two singletons are equinumerous. (Contributed by NM, 9-Nov-2003.)
Assertion
Ref Expression
en2sn ((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})

Proof of Theorem en2sn
StepHypRef Expression
1 ensn1g 6853 . 2 (𝐴𝐶 → {𝐴} ≈ 1o)
2 ensn1g 6853 . . 3 (𝐵𝐷 → {𝐵} ≈ 1o)
32ensymd 6839 . 2 (𝐵𝐷 → 1o ≈ {𝐵})
4 entr 6840 . 2 (({𝐴} ≈ 1o ∧ 1o ≈ {𝐵}) → {𝐴} ≈ {𝐵})
51, 3, 4syl2an 289 1 ((𝐴𝐶𝐵𝐷) → {𝐴} ≈ {𝐵})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164  {csn 3619   class class class wbr 4030  1oc1o 6464  cen 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-1o 6471  df-er 6589  df-en 6797
This theorem is referenced by:  enpr2d  6873  fiunsnnn  6939  unsnfi  6977  frecfzennn  10500  hashsng  10872
  Copyright terms: Public domain W3C validator