ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashdvds Unicode version

Theorem hashdvds 12362
Description: The number of numbers in a given residue class in a finite set of integers. (Contributed by Mario Carneiro, 12-Mar-2014.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
hashdvds.1  |-  ( ph  ->  N  e.  NN )
hashdvds.2  |-  ( ph  ->  A  e.  ZZ )
hashdvds.3  |-  ( ph  ->  B  e.  ( ZZ>= `  ( A  -  1
) ) )
hashdvds.4  |-  ( ph  ->  C  e.  ZZ )
Assertion
Ref Expression
hashdvds  |-  ( ph  ->  ( `  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )  =  ( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )
Distinct variable groups:    x, A    x, B    x, C    x, N
Allowed substitution hint:    ph( x)

Proof of Theorem hashdvds
Dummy variables  a  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1zzd 9347 . . . . . 6  |-  ( ph  ->  1  e.  ZZ )
2 hashdvds.3 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  ( ZZ>= `  ( A  -  1
) ) )
3 eluzelz 9604 . . . . . . . . . . 11  |-  ( B  e.  ( ZZ>= `  ( A  -  1 ) )  ->  B  e.  ZZ )
42, 3syl 14 . . . . . . . . . 10  |-  ( ph  ->  B  e.  ZZ )
5 hashdvds.4 . . . . . . . . . 10  |-  ( ph  ->  C  e.  ZZ )
64, 5zsubcld 9447 . . . . . . . . 9  |-  ( ph  ->  ( B  -  C
)  e.  ZZ )
7 hashdvds.1 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
8 znq 9692 . . . . . . . . 9  |-  ( ( ( B  -  C
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( B  -  C )  /  N
)  e.  QQ )
96, 7, 8syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( ( B  -  C )  /  N
)  e.  QQ )
109flqcld 10349 . . . . . . 7  |-  ( ph  ->  ( |_ `  (
( B  -  C
)  /  N ) )  e.  ZZ )
11 hashdvds.2 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  ZZ )
12 peano2zm 9358 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  ( A  -  1 )  e.  ZZ )
1311, 12syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( A  -  1 )  e.  ZZ )
1413, 5zsubcld 9447 . . . . . . . . 9  |-  ( ph  ->  ( ( A  - 
1 )  -  C
)  e.  ZZ )
15 znq 9692 . . . . . . . . 9  |-  ( ( ( ( A  - 
1 )  -  C
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( A  -  1 )  -  C )  /  N
)  e.  QQ )
1614, 7, 15syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( ( ( A  -  1 )  -  C )  /  N
)  e.  QQ )
1716flqcld 10349 . . . . . . 7  |-  ( ph  ->  ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  e.  ZZ )
1810, 17zsubcld 9447 . . . . . 6  |-  ( ph  ->  ( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  e.  ZZ )
19 fzen 10112 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  ( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  e.  ZZ  /\  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  e.  ZZ )  ->  (
1 ... ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  (
( 1  +  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) ... ( ( ( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) )  +  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) ) ) ) )
201, 18, 17, 19syl3anc 1249 . . . . 5  |-  ( ph  ->  ( 1 ... (
( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  ( ( 1  +  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) ... ( ( ( |_ `  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) ) )  +  ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) ) ) ) )
21 ax-1cn 7967 . . . . . . 7  |-  1  e.  CC
2217zcnd 9443 . . . . . . 7  |-  ( ph  ->  ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  e.  CC )
23 addcom 8158 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  e.  CC )  -> 
( 1  +  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  =  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) )
2421, 22, 23sylancr 414 . . . . . 6  |-  ( ph  ->  ( 1  +  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  =  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) )
2510zcnd 9443 . . . . . . 7  |-  ( ph  ->  ( |_ `  (
( B  -  C
)  /  N ) )  e.  CC )
2625, 22npcand 8336 . . . . . 6  |-  ( ph  ->  ( ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  +  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) )  =  ( |_ `  ( ( B  -  C )  /  N
) ) )
2724, 26oveq12d 5937 . . . . 5  |-  ( ph  ->  ( ( 1  +  ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) ) ) ... (
( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  +  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) ) ) )  =  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  (
( B  -  C
)  /  N ) ) ) )
2820, 27breqtrd 4056 . . . 4  |-  ( ph  ->  ( 1 ... (
( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  ( ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N
) ) ) )
2917peano2zd 9445 . . . . . . 7  |-  ( ph  ->  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  +  1 )  e.  ZZ )
3029, 10fzfigd 10505 . . . . . 6  |-  ( ph  ->  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  e.  Fin )
3130elexd 2773 . . . . 5  |-  ( ph  ->  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  e.  _V )
3211, 4fzfigd 10505 . . . . . . 7  |-  ( ph  ->  ( A ... B
)  e.  Fin )
33 elfzelz 10094 . . . . . . . . . . . 12  |-  ( a  e.  ( A ... B )  ->  a  e.  ZZ )
3433adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( A ... B ) )  ->  a  e.  ZZ )
355adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( A ... B ) )  ->  C  e.  ZZ )
3634, 35zsubcld 9447 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( A ... B ) )  ->  ( a  -  C )  e.  ZZ )
37 dvdsdc 11944 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( a  -  C
)  e.  ZZ )  -> DECID 
N  ||  ( a  -  C ) )
387, 36, 37syl2an2r 595 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( A ... B ) )  -> DECID  N  ||  ( a  -  C ) )
3938ralrimiva 2567 . . . . . . . 8  |-  ( ph  ->  A. a  e.  ( A ... B )DECID  N 
||  ( a  -  C ) )
40 oveq1 5926 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
x  -  C )  =  ( a  -  C ) )
4140breq2d 4042 . . . . . . . . . 10  |-  ( x  =  a  ->  ( N  ||  ( x  -  C )  <->  N  ||  (
a  -  C ) ) )
4241dcbid 839 . . . . . . . . 9  |-  ( x  =  a  ->  (DECID  N  ||  ( x  -  C
)  <-> DECID  N  ||  ( a  -  C ) ) )
4342cbvralv 2726 . . . . . . . 8  |-  ( A. x  e.  ( A ... B )DECID  N  ||  ( x  -  C )  <->  A. a  e.  ( A ... B
)DECID 
N  ||  ( a  -  C ) )
4439, 43sylibr 134 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( A ... B )DECID  N 
||  ( x  -  C ) )
4532, 44ssfirab 6992 . . . . . 6  |-  ( ph  ->  { x  e.  ( A ... B )  |  N  ||  (
x  -  C ) }  e.  Fin )
4645elexd 2773 . . . . 5  |-  ( ph  ->  { x  e.  ( A ... B )  |  N  ||  (
x  -  C ) }  e.  _V )
47 elfzle1 10096 . . . . . . . . . . . . . 14  |-  ( z  e.  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  (
( B  -  C
)  /  N ) ) )  ->  (
( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 )  <_  z )
4847adantl 277 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 )  <_  z
)
49 elfzelz 10094 . . . . . . . . . . . . . 14  |-  ( z  e.  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  (
( B  -  C
)  /  N ) ) )  ->  z  e.  ZZ )
50 zltp1le 9374 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  e.  ZZ  /\  z  e.  ZZ )  ->  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  <  z  <->  ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 )  <_  z ) )
5117, 49, 50syl2an 289 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  < 
z  <->  ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 )  <_  z
) )
5248, 51mpbird 167 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  <  z
)
53 flqlt 10355 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  -  1 )  -  C )  /  N
)  e.  QQ  /\  z  e.  ZZ )  ->  ( ( ( ( A  -  1 )  -  C )  /  N )  <  z  <->  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  <  z ) )
5416, 49, 53syl2an 289 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
( ( A  - 
1 )  -  C
)  /  N )  <  z  <->  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  <  z
) )
5552, 54mpbird 167 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
( A  -  1 )  -  C )  /  N )  < 
z )
5614zred 9442 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  - 
1 )  -  C
)  e.  RR )
5756adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( ( A  -  1 )  -  C )  e.  RR )
5849adantl 277 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  z  e.  ZZ )
5958zred 9442 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  z  e.  RR )
607nnred 8997 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  RR )
617nngt0d 9028 . . . . . . . . . . . . . 14  |-  ( ph  ->  0  <  N )
6260, 61jca 306 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  e.  RR  /\  0  <  N ) )
6362adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( N  e.  RR  /\  0  < 
N ) )
64 ltdivmul2 8899 . . . . . . . . . . . 12  |-  ( ( ( ( A  - 
1 )  -  C
)  e.  RR  /\  z  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( ( ( A  -  1 )  -  C )  /  N )  <  z  <->  ( ( A  -  1 )  -  C )  <  ( z  x.  N ) ) )
6557, 59, 63, 64syl3anc 1249 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
( ( A  - 
1 )  -  C
)  /  N )  <  z  <->  ( ( A  -  1 )  -  C )  < 
( z  x.  N
) ) )
6655, 65mpbid 147 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( ( A  -  1 )  -  C )  < 
( z  x.  N
) )
6713zred 9442 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  -  1 )  e.  RR )
6867adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( A  -  1 )  e.  RR )
695zred 9442 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  RR )
7069adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  C  e.  RR )
717nnzd 9441 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  ZZ )
7271adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  N  e.  ZZ )
7358, 72zmulcld 9448 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( z  x.  N )  e.  ZZ )
7473zred 9442 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( z  x.  N )  e.  RR )
7568, 70, 74ltsubaddd 8562 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
( A  -  1 )  -  C )  <  ( z  x.  N )  <->  ( A  -  1 )  < 
( ( z  x.  N )  +  C
) ) )
7666, 75mpbid 147 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( A  -  1 )  < 
( ( z  x.  N )  +  C
) )
775adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  C  e.  ZZ )
7873, 77zaddcld 9446 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
z  x.  N )  +  C )  e.  ZZ )
79 zlem1lt 9376 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( ( z  x.  N )  +  C
)  e.  ZZ )  ->  ( A  <_ 
( ( z  x.  N )  +  C
)  <->  ( A  - 
1 )  <  (
( z  x.  N
)  +  C ) ) )
8011, 78, 79syl2an2r 595 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( A  <_  ( ( z  x.  N )  +  C
)  <->  ( A  - 
1 )  <  (
( z  x.  N
)  +  C ) ) )
8176, 80mpbird 167 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  A  <_  ( ( z  x.  N
)  +  C ) )
82 elfzle2 10097 . . . . . . . . . . . 12  |-  ( z  e.  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  (
( B  -  C
)  /  N ) ) )  ->  z  <_  ( |_ `  (
( B  -  C
)  /  N ) ) )
8382adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  z  <_  ( |_ `  ( ( B  -  C )  /  N ) ) )
84 flqge 10354 . . . . . . . . . . . 12  |-  ( ( ( ( B  -  C )  /  N
)  e.  QQ  /\  z  e.  ZZ )  ->  ( z  <_  (
( B  -  C
)  /  N )  <-> 
z  <_  ( |_ `  ( ( B  -  C )  /  N
) ) ) )
859, 49, 84syl2an 289 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( z  <_  ( ( B  -  C )  /  N
)  <->  z  <_  ( |_ `  ( ( B  -  C )  /  N ) ) ) )
8683, 85mpbird 167 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  z  <_  ( ( B  -  C
)  /  N ) )
876zred 9442 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  -  C
)  e.  RR )
8887adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( B  -  C )  e.  RR )
89 lemuldiv 8902 . . . . . . . . . . 11  |-  ( ( z  e.  RR  /\  ( B  -  C
)  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  ->  ( (
z  x.  N )  <_  ( B  -  C )  <->  z  <_  ( ( B  -  C
)  /  N ) ) )
9059, 88, 63, 89syl3anc 1249 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
z  x.  N )  <_  ( B  -  C )  <->  z  <_  ( ( B  -  C
)  /  N ) ) )
9186, 90mpbird 167 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( z  x.  N )  <_  ( B  -  C )
)
924zred 9442 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  RR )
9392adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  B  e.  RR )
94 leaddsub 8459 . . . . . . . . . 10  |-  ( ( ( z  x.  N
)  e.  RR  /\  C  e.  RR  /\  B  e.  RR )  ->  (
( ( z  x.  N )  +  C
)  <_  B  <->  ( z  x.  N )  <_  ( B  -  C )
) )
9574, 70, 93, 94syl3anc 1249 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
( z  x.  N
)  +  C )  <_  B  <->  ( z  x.  N )  <_  ( B  -  C )
) )
9691, 95mpbird 167 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
z  x.  N )  +  C )  <_  B )
9711adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  A  e.  ZZ )
984adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  B  e.  ZZ )
99 elfz 10083 . . . . . . . . 9  |-  ( ( ( ( z  x.  N )  +  C
)  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( ( z  x.  N )  +  C
)  e.  ( A ... B )  <->  ( A  <_  ( ( z  x.  N )  +  C
)  /\  ( (
z  x.  N )  +  C )  <_  B ) ) )
10078, 97, 98, 99syl3anc 1249 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
( z  x.  N
)  +  C )  e.  ( A ... B )  <->  ( A  <_  ( ( z  x.  N )  +  C
)  /\  ( (
z  x.  N )  +  C )  <_  B ) ) )
10181, 96, 100mpbir2and 946 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
z  x.  N )  +  C )  e.  ( A ... B
) )
102 dvdsmul2 11960 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( z  x.  N ) )
10358, 72, 102syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  N  ||  (
z  x.  N ) )
10473zcnd 9443 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( z  x.  N )  e.  CC )
1055zcnd 9443 . . . . . . . . . 10  |-  ( ph  ->  C  e.  CC )
106105adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  C  e.  CC )
107104, 106pncand 8333 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
( z  x.  N
)  +  C )  -  C )  =  ( z  x.  N
) )
108103, 107breqtrrd 4058 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  N  ||  (
( ( z  x.  N )  +  C
)  -  C ) )
109 oveq1 5926 . . . . . . . . 9  |-  ( x  =  ( ( z  x.  N )  +  C )  ->  (
x  -  C )  =  ( ( ( z  x.  N )  +  C )  -  C ) )
110109breq2d 4042 . . . . . . . 8  |-  ( x  =  ( ( z  x.  N )  +  C )  ->  ( N  ||  ( x  -  C )  <->  N  ||  (
( ( z  x.  N )  +  C
)  -  C ) ) )
111110elrab 2917 . . . . . . 7  |-  ( ( ( z  x.  N
)  +  C )  e.  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) }  <->  ( (
( z  x.  N
)  +  C )  e.  ( A ... B )  /\  N  ||  ( ( ( z  x.  N )  +  C )  -  C
) ) )
112101, 108, 111sylanbrc 417 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
z  x.  N )  +  C )  e. 
{ x  e.  ( A ... B )  |  N  ||  (
x  -  C ) } )
113112ex 115 . . . . 5  |-  ( ph  ->  ( z  e.  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  +  1 ) ... ( |_
`  ( ( B  -  C )  /  N ) ) )  ->  ( ( z  x.  N )  +  C )  e.  {
x  e.  ( A ... B )  |  N  ||  ( x  -  C ) } ) )
114 oveq1 5926 . . . . . . . 8  |-  ( x  =  y  ->  (
x  -  C )  =  ( y  -  C ) )
115114breq2d 4042 . . . . . . 7  |-  ( x  =  y  ->  ( N  ||  ( x  -  C )  <->  N  ||  (
y  -  C ) ) )
116115elrab 2917 . . . . . 6  |-  ( y  e.  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) }  <->  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )
11767adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( A  -  1 )  e.  RR )
118 elfzelz 10094 . . . . . . . . . . . . . 14  |-  ( y  e.  ( A ... B )  ->  y  e.  ZZ )
119118ad2antrl 490 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  y  e.  ZZ )
120119zred 9442 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  y  e.  RR )
12169adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  C  e.  RR )
122 elfzle1 10096 . . . . . . . . . . . . . 14  |-  ( y  e.  ( A ... B )  ->  A  <_  y )
123122ad2antrl 490 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  A  <_  y )
124 zlem1lt 9376 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  y  e.  ZZ )  ->  ( A  <_  y  <->  ( A  -  1 )  <  y ) )
12511, 119, 124syl2an2r 595 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( A  <_  y  <->  ( A  -  1 )  < 
y ) )
126123, 125mpbid 147 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( A  -  1 )  <  y )
127117, 120, 121, 126ltsub1dd 8578 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( A  -  1 )  -  C )  <  ( y  -  C ) )
12856adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( A  -  1 )  -  C )  e.  RR )
1295adantr 276 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  C  e.  ZZ )
130119, 129zsubcld 9447 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
y  -  C )  e.  ZZ )
131130zred 9442 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
y  -  C )  e.  RR )
13262adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( N  e.  RR  /\  0  <  N ) )
133 ltdiv1 8889 . . . . . . . . . . . 12  |-  ( ( ( ( A  - 
1 )  -  C
)  e.  RR  /\  ( y  -  C
)  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  ->  ( (
( A  -  1 )  -  C )  <  ( y  -  C )  <->  ( (
( A  -  1 )  -  C )  /  N )  < 
( ( y  -  C )  /  N
) ) )
134128, 131, 132, 133syl3anc 1249 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( ( A  - 
1 )  -  C
)  <  ( y  -  C )  <->  ( (
( A  -  1 )  -  C )  /  N )  < 
( ( y  -  C )  /  N
) ) )
135127, 134mpbid 147 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( ( A  - 
1 )  -  C
)  /  N )  <  ( ( y  -  C )  /  N ) )
136 simprr 531 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  N  ||  ( y  -  C
) )
13771adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  N  e.  ZZ )
1387nnne0d 9029 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  =/=  0 )
139138adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  N  =/=  0 )
140 dvdsval2 11936 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  N  =/=  0  /\  (
y  -  C )  e.  ZZ )  -> 
( N  ||  (
y  -  C )  <-> 
( ( y  -  C )  /  N
)  e.  ZZ ) )
141137, 139, 130, 140syl3anc 1249 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( N  ||  ( y  -  C )  <->  ( (
y  -  C )  /  N )  e.  ZZ ) )
142136, 141mpbid 147 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( y  -  C
)  /  N )  e.  ZZ )
143 flqlt 10355 . . . . . . . . . . 11  |-  ( ( ( ( ( A  -  1 )  -  C )  /  N
)  e.  QQ  /\  ( ( y  -  C )  /  N
)  e.  ZZ )  ->  ( ( ( ( A  -  1 )  -  C )  /  N )  < 
( ( y  -  C )  /  N
)  <->  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  <  (
( y  -  C
)  /  N ) ) )
14416, 142, 143syl2an2r 595 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( ( ( A  -  1 )  -  C )  /  N
)  <  ( (
y  -  C )  /  N )  <->  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  <  (
( y  -  C
)  /  N ) ) )
145135, 144mpbid 147 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  < 
( ( y  -  C )  /  N
) )
146 zltp1le 9374 . . . . . . . . . 10  |-  ( ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  e.  ZZ  /\  ( ( y  -  C )  /  N
)  e.  ZZ )  ->  ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  < 
( ( y  -  C )  /  N
)  <->  ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 )  <_  (
( y  -  C
)  /  N ) ) )
14717, 142, 146syl2an2r 595 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  <  ( ( y  -  C )  /  N )  <->  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 )  <_  (
( y  -  C
)  /  N ) ) )
148145, 147mpbid 147 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 )  <_  ( ( y  -  C )  /  N ) )
14992adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  B  e.  RR )
150 elfzle2 10097 . . . . . . . . . . . 12  |-  ( y  e.  ( A ... B )  ->  y  <_  B )
151150ad2antrl 490 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  y  <_  B )
152120, 149, 121, 151lesub1dd 8582 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
y  -  C )  <_  ( B  -  C ) )
15387adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( B  -  C )  e.  RR )
154 lediv1 8890 . . . . . . . . . . 11  |-  ( ( ( y  -  C
)  e.  RR  /\  ( B  -  C
)  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  ->  ( (
y  -  C )  <_  ( B  -  C )  <->  ( (
y  -  C )  /  N )  <_ 
( ( B  -  C )  /  N
) ) )
155131, 153, 132, 154syl3anc 1249 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( y  -  C
)  <_  ( B  -  C )  <->  ( (
y  -  C )  /  N )  <_ 
( ( B  -  C )  /  N
) ) )
156152, 155mpbid 147 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( y  -  C
)  /  N )  <_  ( ( B  -  C )  /  N ) )
157 flqge 10354 . . . . . . . . . 10  |-  ( ( ( ( B  -  C )  /  N
)  e.  QQ  /\  ( ( y  -  C )  /  N
)  e.  ZZ )  ->  ( ( ( y  -  C )  /  N )  <_ 
( ( B  -  C )  /  N
)  <->  ( ( y  -  C )  /  N )  <_  ( |_ `  ( ( B  -  C )  /  N ) ) ) )
1589, 142, 157syl2an2r 595 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( ( y  -  C )  /  N
)  <_  ( ( B  -  C )  /  N )  <->  ( (
y  -  C )  /  N )  <_ 
( |_ `  (
( B  -  C
)  /  N ) ) ) )
159156, 158mpbid 147 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( y  -  C
)  /  N )  <_  ( |_ `  ( ( B  -  C )  /  N
) ) )
16029adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 )  e.  ZZ )
16110adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( |_ `  ( ( B  -  C )  /  N ) )  e.  ZZ )
162 elfz 10083 . . . . . . . . 9  |-  ( ( ( ( y  -  C )  /  N
)  e.  ZZ  /\  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  +  1 )  e.  ZZ  /\  ( |_ `  ( ( B  -  C )  /  N ) )  e.  ZZ )  -> 
( ( ( y  -  C )  /  N )  e.  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  +  1 ) ... ( |_
`  ( ( B  -  C )  /  N ) ) )  <-> 
( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 )  <_  (
( y  -  C
)  /  N )  /\  ( ( y  -  C )  /  N )  <_  ( |_ `  ( ( B  -  C )  /  N ) ) ) ) )
163142, 160, 161, 162syl3anc 1249 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( ( y  -  C )  /  N
)  e.  ( ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N
) ) )  <->  ( (
( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 )  <_  ( ( y  -  C )  /  N )  /\  (
( y  -  C
)  /  N )  <_  ( |_ `  ( ( B  -  C )  /  N
) ) ) ) )
164148, 159, 163mpbir2and 946 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( y  -  C
)  /  N )  e.  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  (
( B  -  C
)  /  N ) ) ) )
165164ex 115 . . . . . 6  |-  ( ph  ->  ( ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) )  ->  ( (
y  -  C )  /  N )  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) ) )
166116, 165biimtrid 152 . . . . 5  |-  ( ph  ->  ( y  e.  {
x  e.  ( A ... B )  |  N  ||  ( x  -  C ) }  ->  ( ( y  -  C )  /  N )  e.  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  +  1 ) ... ( |_
`  ( ( B  -  C )  /  N ) ) ) ) )
167116anbi2i 457 . . . . . . 7  |-  ( ( z  e.  ( ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N
) ) )  /\  y  e.  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )  <->  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )
168130zcnd 9443 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
y  -  C )  e.  CC )
169168adantrl 478 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
( y  -  C
)  e.  CC )
17058zcnd 9443 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  z  e.  CC )
171170adantrr 479 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
z  e.  CC )
1727nncnd 8998 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  CC )
173172adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  ->  N  e.  CC )
1747nnap0d 9030 . . . . . . . . . . 11  |-  ( ph  ->  N #  0 )
175174adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  ->  N #  0 )
176169, 171, 173, 175divmulap3d 8846 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
( ( ( y  -  C )  /  N )  =  z  <-> 
( y  -  C
)  =  ( z  x.  N ) ) )
177119zcnd 9443 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  y  e.  CC )
178177adantrl 478 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
y  e.  CC )
179105adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  ->  C  e.  CC )
180104adantrr 479 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
( z  x.  N
)  e.  CC )
181178, 179, 180subadd2d 8351 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
( ( y  -  C )  =  ( z  x.  N )  <-> 
( ( z  x.  N )  +  C
)  =  y ) )
182176, 181bitrd 188 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
( ( ( y  -  C )  /  N )  =  z  <-> 
( ( z  x.  N )  +  C
)  =  y ) )
183 eqcom 2195 . . . . . . . 8  |-  ( z  =  ( ( y  -  C )  /  N )  <->  ( (
y  -  C )  /  N )  =  z )
184 eqcom 2195 . . . . . . . 8  |-  ( y  =  ( ( z  x.  N )  +  C )  <->  ( (
z  x.  N )  +  C )  =  y )
185182, 183, 1843bitr4g 223 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
( z  =  ( ( y  -  C
)  /  N )  <-> 
y  =  ( ( z  x.  N )  +  C ) ) )
186167, 185sylan2b 287 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  y  e.  {
x  e.  ( A ... B )  |  N  ||  ( x  -  C ) } ) )  ->  (
z  =  ( ( y  -  C )  /  N )  <->  y  =  ( ( z  x.  N )  +  C
) ) )
187186ex 115 . . . . 5  |-  ( ph  ->  ( ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  y  e.  {
x  e.  ( A ... B )  |  N  ||  ( x  -  C ) } )  ->  ( z  =  ( ( y  -  C )  /  N )  <->  y  =  ( ( z  x.  N )  +  C
) ) ) )
18831, 46, 113, 166, 187en3d 6825 . . . 4  |-  ( ph  ->  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) 
~~  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )
189 entr 6840 . . . 4  |-  ( ( ( 1 ... (
( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  ( ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N
) ) )  /\  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) 
~~  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )  -> 
( 1 ... (
( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )
19028, 188, 189syl2anc 411 . . 3  |-  ( ph  ->  ( 1 ... (
( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )
1911, 18fzfigd 10505 . . . 4  |-  ( ph  ->  ( 1 ... (
( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  e.  Fin )
192 hashen 10858 . . . 4  |-  ( ( ( 1 ... (
( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  e.  Fin  /\  { x  e.  ( A ... B )  |  N  ||  ( x  -  C ) }  e.  Fin )  -> 
( ( `  (
1 ... ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) ) )  =  ( `  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )  <->  ( 1 ... ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  {
x  e.  ( A ... B )  |  N  ||  ( x  -  C ) } ) )
193191, 45, 192syl2anc 411 . . 3  |-  ( ph  ->  ( ( `  (
1 ... ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) ) )  =  ( `  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )  <->  ( 1 ... ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  {
x  e.  ( A ... B )  |  N  ||  ( x  -  C ) } ) )
194190, 193mpbird 167 . 2  |-  ( ph  ->  ( `  ( 1 ... ( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) ) )  =  ( `  { x  e.  ( A ... B )  |  N  ||  (
x  -  C ) } ) )
195 eluzle 9607 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  ( A  -  1 ) )  ->  ( A  -  1 )  <_  B )
1962, 195syl 14 . . . . . 6  |-  ( ph  ->  ( A  -  1 )  <_  B )
197 zre 9324 . . . . . . . 8  |-  ( ( A  -  1 )  e.  ZZ  ->  ( A  -  1 )  e.  RR )
198 zre 9324 . . . . . . . 8  |-  ( B  e.  ZZ  ->  B  e.  RR )
199 zre 9324 . . . . . . . 8  |-  ( C  e.  ZZ  ->  C  e.  RR )
200 lesub1 8477 . . . . . . . 8  |-  ( ( ( A  -  1 )  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  -  1 )  <_  B  <->  ( ( A  -  1 )  -  C )  <_ 
( B  -  C
) ) )
201197, 198, 199, 200syl3an 1291 . . . . . . 7  |-  ( ( ( A  -  1 )  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  (
( A  -  1 )  <_  B  <->  ( ( A  -  1 )  -  C )  <_ 
( B  -  C
) ) )
20213, 4, 5, 201syl3anc 1249 . . . . . 6  |-  ( ph  ->  ( ( A  - 
1 )  <_  B  <->  ( ( A  -  1 )  -  C )  <_  ( B  -  C ) ) )
203196, 202mpbid 147 . . . . 5  |-  ( ph  ->  ( ( A  - 
1 )  -  C
)  <_  ( B  -  C ) )
204 lediv1 8890 . . . . . 6  |-  ( ( ( ( A  - 
1 )  -  C
)  e.  RR  /\  ( B  -  C
)  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  ->  ( (
( A  -  1 )  -  C )  <_  ( B  -  C )  <->  ( (
( A  -  1 )  -  C )  /  N )  <_ 
( ( B  -  C )  /  N
) ) )
20556, 87, 62, 204syl3anc 1249 . . . . 5  |-  ( ph  ->  ( ( ( A  -  1 )  -  C )  <_  ( B  -  C )  <->  ( ( ( A  - 
1 )  -  C
)  /  N )  <_  ( ( B  -  C )  /  N ) ) )
206203, 205mpbid 147 . . . 4  |-  ( ph  ->  ( ( ( A  -  1 )  -  C )  /  N
)  <_  ( ( B  -  C )  /  N ) )
207 flqword2 10361 . . . 4  |-  ( ( ( ( ( A  -  1 )  -  C )  /  N
)  e.  QQ  /\  ( ( B  -  C )  /  N
)  e.  QQ  /\  ( ( ( A  -  1 )  -  C )  /  N
)  <_  ( ( B  -  C )  /  N ) )  -> 
( |_ `  (
( B  -  C
)  /  N ) )  e.  ( ZZ>= `  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )
20816, 9, 206, 207syl3anc 1249 . . 3  |-  ( ph  ->  ( |_ `  (
( B  -  C
)  /  N ) )  e.  ( ZZ>= `  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )
209 uznn0sub 9627 . . 3  |-  ( ( |_ `  ( ( B  -  C )  /  N ) )  e.  ( ZZ>= `  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  ->  ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  e.  NN0 )
210 hashfz1 10857 . . 3  |-  ( ( ( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) )  e.  NN0  ->  ( `  (
1 ... ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) ) )  =  ( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )
211208, 209, 2103syl 17 . 2  |-  ( ph  ->  ( `  ( 1 ... ( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) ) )  =  ( ( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )
212194, 211eqtr3d 2228 1  |-  ( ph  ->  ( `  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )  =  ( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2164    =/= wne 2364   A.wral 2472   {crab 2476   class class class wbr 4030   ` cfv 5255  (class class class)co 5919    ~~ cen 6794   Fincfn 6796   CCcc 7872   RRcr 7873   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879    < clt 8056    <_ cle 8057    - cmin 8192   # cap 8602    / cdiv 8693   NNcn 8984   NN0cn0 9243   ZZcz 9320   ZZ>=cuz 9595   QQcq 9687   ...cfz 10077   |_cfl 10340  ♯chash 10849    || cdvds 11933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-1o 6471  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fl 10342  df-mod 10397  df-ihash 10850  df-dvds 11934
This theorem is referenced by:  phiprmpw  12363
  Copyright terms: Public domain W3C validator