ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashdvds Unicode version

Theorem hashdvds 11279
Description: The number of numbers in a given residue class in a finite set of integers. (Contributed by Mario Carneiro, 12-Mar-2014.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
Hypotheses
Ref Expression
hashdvds.1  |-  ( ph  ->  N  e.  NN )
hashdvds.2  |-  ( ph  ->  A  e.  ZZ )
hashdvds.3  |-  ( ph  ->  B  e.  ( ZZ>= `  ( A  -  1
) ) )
hashdvds.4  |-  ( ph  ->  C  e.  ZZ )
Assertion
Ref Expression
hashdvds  |-  ( ph  ->  ( `  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )  =  ( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )
Distinct variable groups:    x, A    x, B    x, C    x, N
Allowed substitution hint:    ph( x)

Proof of Theorem hashdvds
Dummy variables  a  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1zzd 8747 . . . . . 6  |-  ( ph  ->  1  e.  ZZ )
2 hashdvds.3 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  ( ZZ>= `  ( A  -  1
) ) )
3 eluzelz 8997 . . . . . . . . . . 11  |-  ( B  e.  ( ZZ>= `  ( A  -  1 ) )  ->  B  e.  ZZ )
42, 3syl 14 . . . . . . . . . 10  |-  ( ph  ->  B  e.  ZZ )
5 hashdvds.4 . . . . . . . . . 10  |-  ( ph  ->  C  e.  ZZ )
64, 5zsubcld 8843 . . . . . . . . 9  |-  ( ph  ->  ( B  -  C
)  e.  ZZ )
7 hashdvds.1 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
8 znq 9078 . . . . . . . . 9  |-  ( ( ( B  -  C
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( B  -  C )  /  N
)  e.  QQ )
96, 7, 8syl2anc 403 . . . . . . . 8  |-  ( ph  ->  ( ( B  -  C )  /  N
)  e.  QQ )
109flqcld 9649 . . . . . . 7  |-  ( ph  ->  ( |_ `  (
( B  -  C
)  /  N ) )  e.  ZZ )
11 hashdvds.2 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  ZZ )
12 peano2zm 8758 . . . . . . . . . . 11  |-  ( A  e.  ZZ  ->  ( A  -  1 )  e.  ZZ )
1311, 12syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( A  -  1 )  e.  ZZ )
1413, 5zsubcld 8843 . . . . . . . . 9  |-  ( ph  ->  ( ( A  - 
1 )  -  C
)  e.  ZZ )
15 znq 9078 . . . . . . . . 9  |-  ( ( ( ( A  - 
1 )  -  C
)  e.  ZZ  /\  N  e.  NN )  ->  ( ( ( A  -  1 )  -  C )  /  N
)  e.  QQ )
1614, 7, 15syl2anc 403 . . . . . . . 8  |-  ( ph  ->  ( ( ( A  -  1 )  -  C )  /  N
)  e.  QQ )
1716flqcld 9649 . . . . . . 7  |-  ( ph  ->  ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  e.  ZZ )
1810, 17zsubcld 8843 . . . . . 6  |-  ( ph  ->  ( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  e.  ZZ )
19 fzen 9426 . . . . . 6  |-  ( ( 1  e.  ZZ  /\  ( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  e.  ZZ  /\  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  e.  ZZ )  ->  (
1 ... ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  (
( 1  +  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) ... ( ( ( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) )  +  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) ) ) ) )
201, 18, 17, 19syl3anc 1174 . . . . 5  |-  ( ph  ->  ( 1 ... (
( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  ( ( 1  +  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) ... ( ( ( |_ `  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) ) )  +  ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) ) ) ) )
21 ax-1cn 7417 . . . . . . 7  |-  1  e.  CC
2217zcnd 8839 . . . . . . 7  |-  ( ph  ->  ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  e.  CC )
23 addcom 7598 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  e.  CC )  -> 
( 1  +  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  =  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) )
2421, 22, 23sylancr 405 . . . . . 6  |-  ( ph  ->  ( 1  +  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  =  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) )
2510zcnd 8839 . . . . . . 7  |-  ( ph  ->  ( |_ `  (
( B  -  C
)  /  N ) )  e.  CC )
2625, 22npcand 7776 . . . . . 6  |-  ( ph  ->  ( ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  +  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) )  =  ( |_ `  ( ( B  -  C )  /  N
) ) )
2724, 26oveq12d 5652 . . . . 5  |-  ( ph  ->  ( ( 1  +  ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) ) ) ... (
( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  +  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) ) ) )  =  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  (
( B  -  C
)  /  N ) ) ) )
2820, 27breqtrd 3861 . . . 4  |-  ( ph  ->  ( 1 ... (
( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  ( ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N
) ) ) )
2917peano2zd 8841 . . . . . . 7  |-  ( ph  ->  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  +  1 )  e.  ZZ )
3029, 10fzfigd 9803 . . . . . 6  |-  ( ph  ->  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  e.  Fin )
3130elexd 2632 . . . . 5  |-  ( ph  ->  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  e.  _V )
3211, 4fzfigd 9803 . . . . . . 7  |-  ( ph  ->  ( A ... B
)  e.  Fin )
33 elfzelz 9409 . . . . . . . . . . . 12  |-  ( a  e.  ( A ... B )  ->  a  e.  ZZ )
3433adantl 271 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( A ... B ) )  ->  a  e.  ZZ )
355adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  ( A ... B ) )  ->  C  e.  ZZ )
3634, 35zsubcld 8843 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( A ... B ) )  ->  ( a  -  C )  e.  ZZ )
37 dvdsdc 10886 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  ( a  -  C
)  e.  ZZ )  -> DECID 
N  ||  ( a  -  C ) )
387, 36, 37syl2an2r 562 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( A ... B ) )  -> DECID  N  ||  ( a  -  C ) )
3938ralrimiva 2446 . . . . . . . 8  |-  ( ph  ->  A. a  e.  ( A ... B )DECID  N 
||  ( a  -  C ) )
40 oveq1 5641 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
x  -  C )  =  ( a  -  C ) )
4140breq2d 3849 . . . . . . . . . 10  |-  ( x  =  a  ->  ( N  ||  ( x  -  C )  <->  N  ||  (
a  -  C ) ) )
4241dcbid 786 . . . . . . . . 9  |-  ( x  =  a  ->  (DECID  N  ||  ( x  -  C
)  <-> DECID  N  ||  ( a  -  C ) ) )
4342cbvralv 2590 . . . . . . . 8  |-  ( A. x  e.  ( A ... B )DECID  N  ||  ( x  -  C )  <->  A. a  e.  ( A ... B
)DECID 
N  ||  ( a  -  C ) )
4439, 43sylibr 132 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( A ... B )DECID  N 
||  ( x  -  C ) )
4532, 44ssfirab 6622 . . . . . 6  |-  ( ph  ->  { x  e.  ( A ... B )  |  N  ||  (
x  -  C ) }  e.  Fin )
4645elexd 2632 . . . . 5  |-  ( ph  ->  { x  e.  ( A ... B )  |  N  ||  (
x  -  C ) }  e.  _V )
47 elfzle1 9410 . . . . . . . . . . . . . 14  |-  ( z  e.  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  (
( B  -  C
)  /  N ) ) )  ->  (
( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 )  <_  z )
4847adantl 271 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 )  <_  z
)
49 elfzelz 9409 . . . . . . . . . . . . . 14  |-  ( z  e.  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  (
( B  -  C
)  /  N ) ) )  ->  z  e.  ZZ )
50 zltp1le 8774 . . . . . . . . . . . . . 14  |-  ( ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  e.  ZZ  /\  z  e.  ZZ )  ->  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  <  z  <->  ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 )  <_  z ) )
5117, 49, 50syl2an 283 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  < 
z  <->  ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 )  <_  z
) )
5248, 51mpbird 165 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  <  z
)
53 flqlt 9655 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  -  1 )  -  C )  /  N
)  e.  QQ  /\  z  e.  ZZ )  ->  ( ( ( ( A  -  1 )  -  C )  /  N )  <  z  <->  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  <  z ) )
5416, 49, 53syl2an 283 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
( ( A  - 
1 )  -  C
)  /  N )  <  z  <->  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  <  z
) )
5552, 54mpbird 165 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
( A  -  1 )  -  C )  /  N )  < 
z )
5614zred 8838 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  - 
1 )  -  C
)  e.  RR )
5756adantr 270 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( ( A  -  1 )  -  C )  e.  RR )
5849adantl 271 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  z  e.  ZZ )
5958zred 8838 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  z  e.  RR )
607nnred 8407 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  RR )
617nngt0d 8437 . . . . . . . . . . . . . 14  |-  ( ph  ->  0  <  N )
6260, 61jca 300 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  e.  RR  /\  0  <  N ) )
6362adantr 270 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( N  e.  RR  /\  0  < 
N ) )
64 ltdivmul2 8311 . . . . . . . . . . . 12  |-  ( ( ( ( A  - 
1 )  -  C
)  e.  RR  /\  z  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  -> 
( ( ( ( A  -  1 )  -  C )  /  N )  <  z  <->  ( ( A  -  1 )  -  C )  <  ( z  x.  N ) ) )
6557, 59, 63, 64syl3anc 1174 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
( ( A  - 
1 )  -  C
)  /  N )  <  z  <->  ( ( A  -  1 )  -  C )  < 
( z  x.  N
) ) )
6655, 65mpbid 145 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( ( A  -  1 )  -  C )  < 
( z  x.  N
) )
6713zred 8838 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  -  1 )  e.  RR )
6867adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( A  -  1 )  e.  RR )
695zred 8838 . . . . . . . . . . . 12  |-  ( ph  ->  C  e.  RR )
7069adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  C  e.  RR )
717nnzd 8837 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  ZZ )
7271adantr 270 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  N  e.  ZZ )
7358, 72zmulcld 8844 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( z  x.  N )  e.  ZZ )
7473zred 8838 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( z  x.  N )  e.  RR )
7568, 70, 74ltsubaddd 7994 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
( A  -  1 )  -  C )  <  ( z  x.  N )  <->  ( A  -  1 )  < 
( ( z  x.  N )  +  C
) ) )
7666, 75mpbid 145 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( A  -  1 )  < 
( ( z  x.  N )  +  C
) )
775adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  C  e.  ZZ )
7873, 77zaddcld 8842 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
z  x.  N )  +  C )  e.  ZZ )
79 zlem1lt 8776 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  ( ( z  x.  N )  +  C
)  e.  ZZ )  ->  ( A  <_ 
( ( z  x.  N )  +  C
)  <->  ( A  - 
1 )  <  (
( z  x.  N
)  +  C ) ) )
8011, 78, 79syl2an2r 562 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( A  <_  ( ( z  x.  N )  +  C
)  <->  ( A  - 
1 )  <  (
( z  x.  N
)  +  C ) ) )
8176, 80mpbird 165 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  A  <_  ( ( z  x.  N
)  +  C ) )
82 elfzle2 9411 . . . . . . . . . . . 12  |-  ( z  e.  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  (
( B  -  C
)  /  N ) ) )  ->  z  <_  ( |_ `  (
( B  -  C
)  /  N ) ) )
8382adantl 271 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  z  <_  ( |_ `  ( ( B  -  C )  /  N ) ) )
84 flqge 9654 . . . . . . . . . . . 12  |-  ( ( ( ( B  -  C )  /  N
)  e.  QQ  /\  z  e.  ZZ )  ->  ( z  <_  (
( B  -  C
)  /  N )  <-> 
z  <_  ( |_ `  ( ( B  -  C )  /  N
) ) ) )
859, 49, 84syl2an 283 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( z  <_  ( ( B  -  C )  /  N
)  <->  z  <_  ( |_ `  ( ( B  -  C )  /  N ) ) ) )
8683, 85mpbird 165 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  z  <_  ( ( B  -  C
)  /  N ) )
876zred 8838 . . . . . . . . . . . 12  |-  ( ph  ->  ( B  -  C
)  e.  RR )
8887adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( B  -  C )  e.  RR )
89 lemuldiv 8314 . . . . . . . . . . 11  |-  ( ( z  e.  RR  /\  ( B  -  C
)  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  ->  ( (
z  x.  N )  <_  ( B  -  C )  <->  z  <_  ( ( B  -  C
)  /  N ) ) )
9059, 88, 63, 89syl3anc 1174 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
z  x.  N )  <_  ( B  -  C )  <->  z  <_  ( ( B  -  C
)  /  N ) ) )
9186, 90mpbird 165 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( z  x.  N )  <_  ( B  -  C )
)
924zred 8838 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  RR )
9392adantr 270 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  B  e.  RR )
94 leaddsub 7895 . . . . . . . . . 10  |-  ( ( ( z  x.  N
)  e.  RR  /\  C  e.  RR  /\  B  e.  RR )  ->  (
( ( z  x.  N )  +  C
)  <_  B  <->  ( z  x.  N )  <_  ( B  -  C )
) )
9574, 70, 93, 94syl3anc 1174 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
( z  x.  N
)  +  C )  <_  B  <->  ( z  x.  N )  <_  ( B  -  C )
) )
9691, 95mpbird 165 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
z  x.  N )  +  C )  <_  B )
9711adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  A  e.  ZZ )
984adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  B  e.  ZZ )
99 elfz 9399 . . . . . . . . 9  |-  ( ( ( ( z  x.  N )  +  C
)  e.  ZZ  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( ( z  x.  N )  +  C
)  e.  ( A ... B )  <->  ( A  <_  ( ( z  x.  N )  +  C
)  /\  ( (
z  x.  N )  +  C )  <_  B ) ) )
10078, 97, 98, 99syl3anc 1174 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
( z  x.  N
)  +  C )  e.  ( A ... B )  <->  ( A  <_  ( ( z  x.  N )  +  C
)  /\  ( (
z  x.  N )  +  C )  <_  B ) ) )
10181, 96, 100mpbir2and 890 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
z  x.  N )  +  C )  e.  ( A ... B
) )
102 dvdsmul2 10901 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  N  e.  ZZ )  ->  N  ||  ( z  x.  N ) )
10358, 72, 102syl2anc 403 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  N  ||  (
z  x.  N ) )
10473zcnd 8839 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( z  x.  N )  e.  CC )
1055zcnd 8839 . . . . . . . . . 10  |-  ( ph  ->  C  e.  CC )
106105adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  C  e.  CC )
107104, 106pncand 7773 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
( z  x.  N
)  +  C )  -  C )  =  ( z  x.  N
) )
108103, 107breqtrrd 3863 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  N  ||  (
( ( z  x.  N )  +  C
)  -  C ) )
109 oveq1 5641 . . . . . . . . 9  |-  ( x  =  ( ( z  x.  N )  +  C )  ->  (
x  -  C )  =  ( ( ( z  x.  N )  +  C )  -  C ) )
110109breq2d 3849 . . . . . . . 8  |-  ( x  =  ( ( z  x.  N )  +  C )  ->  ( N  ||  ( x  -  C )  <->  N  ||  (
( ( z  x.  N )  +  C
)  -  C ) ) )
111110elrab 2769 . . . . . . 7  |-  ( ( ( z  x.  N
)  +  C )  e.  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) }  <->  ( (
( z  x.  N
)  +  C )  e.  ( A ... B )  /\  N  ||  ( ( ( z  x.  N )  +  C )  -  C
) ) )
112101, 108, 111sylanbrc 408 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  ( (
z  x.  N )  +  C )  e. 
{ x  e.  ( A ... B )  |  N  ||  (
x  -  C ) } )
113112ex 113 . . . . 5  |-  ( ph  ->  ( z  e.  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  +  1 ) ... ( |_
`  ( ( B  -  C )  /  N ) ) )  ->  ( ( z  x.  N )  +  C )  e.  {
x  e.  ( A ... B )  |  N  ||  ( x  -  C ) } ) )
114 oveq1 5641 . . . . . . . 8  |-  ( x  =  y  ->  (
x  -  C )  =  ( y  -  C ) )
115114breq2d 3849 . . . . . . 7  |-  ( x  =  y  ->  ( N  ||  ( x  -  C )  <->  N  ||  (
y  -  C ) ) )
116115elrab 2769 . . . . . 6  |-  ( y  e.  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) }  <->  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )
11767adantr 270 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( A  -  1 )  e.  RR )
118 elfzelz 9409 . . . . . . . . . . . . . 14  |-  ( y  e.  ( A ... B )  ->  y  e.  ZZ )
119118ad2antrl 474 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  y  e.  ZZ )
120119zred 8838 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  y  e.  RR )
12169adantr 270 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  C  e.  RR )
122 elfzle1 9410 . . . . . . . . . . . . . 14  |-  ( y  e.  ( A ... B )  ->  A  <_  y )
123122ad2antrl 474 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  A  <_  y )
124 zlem1lt 8776 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ZZ  /\  y  e.  ZZ )  ->  ( A  <_  y  <->  ( A  -  1 )  <  y ) )
12511, 119, 124syl2an2r 562 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( A  <_  y  <->  ( A  -  1 )  < 
y ) )
126123, 125mpbid 145 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( A  -  1 )  <  y )
127117, 120, 121, 126ltsub1dd 8010 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( A  -  1 )  -  C )  <  ( y  -  C ) )
12856adantr 270 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( A  -  1 )  -  C )  e.  RR )
1295adantr 270 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  C  e.  ZZ )
130119, 129zsubcld 8843 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
y  -  C )  e.  ZZ )
131130zred 8838 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
y  -  C )  e.  RR )
13262adantr 270 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( N  e.  RR  /\  0  <  N ) )
133 ltdiv1 8301 . . . . . . . . . . . 12  |-  ( ( ( ( A  - 
1 )  -  C
)  e.  RR  /\  ( y  -  C
)  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  ->  ( (
( A  -  1 )  -  C )  <  ( y  -  C )  <->  ( (
( A  -  1 )  -  C )  /  N )  < 
( ( y  -  C )  /  N
) ) )
134128, 131, 132, 133syl3anc 1174 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( ( A  - 
1 )  -  C
)  <  ( y  -  C )  <->  ( (
( A  -  1 )  -  C )  /  N )  < 
( ( y  -  C )  /  N
) ) )
135127, 134mpbid 145 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( ( A  - 
1 )  -  C
)  /  N )  <  ( ( y  -  C )  /  N ) )
136 simprr 499 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  N  ||  ( y  -  C
) )
13771adantr 270 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  N  e.  ZZ )
1387nnne0d 8438 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  =/=  0 )
139138adantr 270 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  N  =/=  0 )
140 dvdsval2 10881 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  N  =/=  0  /\  (
y  -  C )  e.  ZZ )  -> 
( N  ||  (
y  -  C )  <-> 
( ( y  -  C )  /  N
)  e.  ZZ ) )
141137, 139, 130, 140syl3anc 1174 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( N  ||  ( y  -  C )  <->  ( (
y  -  C )  /  N )  e.  ZZ ) )
142136, 141mpbid 145 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( y  -  C
)  /  N )  e.  ZZ )
143 flqlt 9655 . . . . . . . . . . 11  |-  ( ( ( ( ( A  -  1 )  -  C )  /  N
)  e.  QQ  /\  ( ( y  -  C )  /  N
)  e.  ZZ )  ->  ( ( ( ( A  -  1 )  -  C )  /  N )  < 
( ( y  -  C )  /  N
)  <->  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  <  (
( y  -  C
)  /  N ) ) )
14416, 142, 143syl2an2r 562 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( ( ( A  -  1 )  -  C )  /  N
)  <  ( (
y  -  C )  /  N )  <->  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  <  (
( y  -  C
)  /  N ) ) )
145135, 144mpbid 145 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  < 
( ( y  -  C )  /  N
) )
146 zltp1le 8774 . . . . . . . . . 10  |-  ( ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  e.  ZZ  /\  ( ( y  -  C )  /  N
)  e.  ZZ )  ->  ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  < 
( ( y  -  C )  /  N
)  <->  ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 )  <_  (
( y  -  C
)  /  N ) ) )
14717, 142, 146syl2an2r 562 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  <  ( ( y  -  C )  /  N )  <->  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 )  <_  (
( y  -  C
)  /  N ) ) )
148145, 147mpbid 145 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 )  <_  ( ( y  -  C )  /  N ) )
14992adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  B  e.  RR )
150 elfzle2 9411 . . . . . . . . . . . 12  |-  ( y  e.  ( A ... B )  ->  y  <_  B )
151150ad2antrl 474 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  y  <_  B )
152120, 149, 121, 151lesub1dd 8014 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
y  -  C )  <_  ( B  -  C ) )
15387adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( B  -  C )  e.  RR )
154 lediv1 8302 . . . . . . . . . . 11  |-  ( ( ( y  -  C
)  e.  RR  /\  ( B  -  C
)  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  ->  ( (
y  -  C )  <_  ( B  -  C )  <->  ( (
y  -  C )  /  N )  <_ 
( ( B  -  C )  /  N
) ) )
155131, 153, 132, 154syl3anc 1174 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( y  -  C
)  <_  ( B  -  C )  <->  ( (
y  -  C )  /  N )  <_ 
( ( B  -  C )  /  N
) ) )
156152, 155mpbid 145 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( y  -  C
)  /  N )  <_  ( ( B  -  C )  /  N ) )
157 flqge 9654 . . . . . . . . . 10  |-  ( ( ( ( B  -  C )  /  N
)  e.  QQ  /\  ( ( y  -  C )  /  N
)  e.  ZZ )  ->  ( ( ( y  -  C )  /  N )  <_ 
( ( B  -  C )  /  N
)  <->  ( ( y  -  C )  /  N )  <_  ( |_ `  ( ( B  -  C )  /  N ) ) ) )
1589, 142, 157syl2an2r 562 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( ( y  -  C )  /  N
)  <_  ( ( B  -  C )  /  N )  <->  ( (
y  -  C )  /  N )  <_ 
( |_ `  (
( B  -  C
)  /  N ) ) ) )
159156, 158mpbid 145 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( y  -  C
)  /  N )  <_  ( |_ `  ( ( B  -  C )  /  N
) ) )
16029adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 )  e.  ZZ )
16110adantr 270 . . . . . . . . 9  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  ( |_ `  ( ( B  -  C )  /  N ) )  e.  ZZ )
162 elfz 9399 . . . . . . . . 9  |-  ( ( ( ( y  -  C )  /  N
)  e.  ZZ  /\  ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  +  1 )  e.  ZZ  /\  ( |_ `  ( ( B  -  C )  /  N ) )  e.  ZZ )  -> 
( ( ( y  -  C )  /  N )  e.  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  +  1 ) ... ( |_
`  ( ( B  -  C )  /  N ) ) )  <-> 
( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 )  <_  (
( y  -  C
)  /  N )  /\  ( ( y  -  C )  /  N )  <_  ( |_ `  ( ( B  -  C )  /  N ) ) ) ) )
163142, 160, 161, 162syl3anc 1174 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( ( y  -  C )  /  N
)  e.  ( ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N
) ) )  <->  ( (
( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 )  <_  ( ( y  -  C )  /  N )  /\  (
( y  -  C
)  /  N )  <_  ( |_ `  ( ( B  -  C )  /  N
) ) ) ) )
164148, 159, 163mpbir2and 890 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
( y  -  C
)  /  N )  e.  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  (
( B  -  C
)  /  N ) ) ) )
165164ex 113 . . . . . 6  |-  ( ph  ->  ( ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) )  ->  ( (
y  -  C )  /  N )  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) ) )
166116, 165syl5bi 150 . . . . 5  |-  ( ph  ->  ( y  e.  {
x  e.  ( A ... B )  |  N  ||  ( x  -  C ) }  ->  ( ( y  -  C )  /  N )  e.  ( ( ( |_ `  ( ( ( A  -  1 )  -  C )  /  N
) )  +  1 ) ... ( |_
`  ( ( B  -  C )  /  N ) ) ) ) )
167116anbi2i 445 . . . . . . 7  |-  ( ( z  e.  ( ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N
) ) )  /\  y  e.  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )  <->  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )
168130zcnd 8839 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  (
y  -  C )  e.  CC )
169168adantrl 462 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
( y  -  C
)  e.  CC )
17058zcnd 8839 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) )  ->  z  e.  CC )
171170adantrr 463 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
z  e.  CC )
1727nncnd 8408 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  CC )
173172adantr 270 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  ->  N  e.  CC )
1747nnap0d 8439 . . . . . . . . . . 11  |-  ( ph  ->  N #  0 )
175174adantr 270 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  ->  N #  0 )
176169, 171, 173, 175divmulap3d 8264 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
( ( ( y  -  C )  /  N )  =  z  <-> 
( y  -  C
)  =  ( z  x.  N ) ) )
177119zcnd 8839 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) )  ->  y  e.  CC )
178177adantrl 462 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
y  e.  CC )
179105adantr 270 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  ->  C  e.  CC )
180104adantrr 463 . . . . . . . . . 10  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
( z  x.  N
)  e.  CC )
181178, 179, 180subadd2d 7791 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
( ( y  -  C )  =  ( z  x.  N )  <-> 
( ( z  x.  N )  +  C
)  =  y ) )
182176, 181bitrd 186 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
( ( ( y  -  C )  /  N )  =  z  <-> 
( ( z  x.  N )  +  C
)  =  y ) )
183 eqcom 2090 . . . . . . . 8  |-  ( z  =  ( ( y  -  C )  /  N )  <->  ( (
y  -  C )  /  N )  =  z )
184 eqcom 2090 . . . . . . . 8  |-  ( y  =  ( ( z  x.  N )  +  C )  <->  ( (
z  x.  N )  +  C )  =  y )
185182, 183, 1843bitr4g 221 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  ( y  e.  ( A ... B
)  /\  N  ||  (
y  -  C ) ) ) )  -> 
( z  =  ( ( y  -  C
)  /  N )  <-> 
y  =  ( ( z  x.  N )  +  C ) ) )
186167, 185sylan2b 281 . . . . . 6  |-  ( (
ph  /\  ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  y  e.  {
x  e.  ( A ... B )  |  N  ||  ( x  -  C ) } ) )  ->  (
z  =  ( ( y  -  C )  /  N )  <->  y  =  ( ( z  x.  N )  +  C
) ) )
187186ex 113 . . . . 5  |-  ( ph  ->  ( ( z  e.  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) )  /\  y  e.  {
x  e.  ( A ... B )  |  N  ||  ( x  -  C ) } )  ->  ( z  =  ( ( y  -  C )  /  N )  <->  y  =  ( ( z  x.  N )  +  C
) ) ) )
18831, 46, 113, 166, 187en3d 6466 . . . 4  |-  ( ph  ->  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) 
~~  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )
189 entr 6481 . . . 4  |-  ( ( ( 1 ... (
( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  ( ( ( |_ `  (
( ( A  - 
1 )  -  C
)  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N
) ) )  /\  ( ( ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) )  +  1 ) ... ( |_ `  ( ( B  -  C )  /  N ) ) ) 
~~  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )  -> 
( 1 ... (
( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )
19028, 188, 189syl2anc 403 . . 3  |-  ( ph  ->  ( 1 ... (
( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )
1911, 18fzfigd 9803 . . . 4  |-  ( ph  ->  ( 1 ... (
( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  e.  Fin )
192 hashen 10157 . . . 4  |-  ( ( ( 1 ... (
( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  e.  Fin  /\  { x  e.  ( A ... B )  |  N  ||  ( x  -  C ) }  e.  Fin )  -> 
( ( `  (
1 ... ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) ) )  =  ( `  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )  <->  ( 1 ... ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  {
x  e.  ( A ... B )  |  N  ||  ( x  -  C ) } ) )
193191, 45, 192syl2anc 403 . . 3  |-  ( ph  ->  ( ( `  (
1 ... ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) ) )  =  ( `  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )  <->  ( 1 ... ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )  ~~  {
x  e.  ( A ... B )  |  N  ||  ( x  -  C ) } ) )
194190, 193mpbird 165 . 2  |-  ( ph  ->  ( `  ( 1 ... ( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) ) )  =  ( `  { x  e.  ( A ... B )  |  N  ||  (
x  -  C ) } ) )
195 eluzle 9000 . . . . . . 7  |-  ( B  e.  ( ZZ>= `  ( A  -  1 ) )  ->  ( A  -  1 )  <_  B )
1962, 195syl 14 . . . . . 6  |-  ( ph  ->  ( A  -  1 )  <_  B )
197 zre 8724 . . . . . . . 8  |-  ( ( A  -  1 )  e.  ZZ  ->  ( A  -  1 )  e.  RR )
198 zre 8724 . . . . . . . 8  |-  ( B  e.  ZZ  ->  B  e.  RR )
199 zre 8724 . . . . . . . 8  |-  ( C  e.  ZZ  ->  C  e.  RR )
200 lesub1 7913 . . . . . . . 8  |-  ( ( ( A  -  1 )  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  -  1 )  <_  B  <->  ( ( A  -  1 )  -  C )  <_ 
( B  -  C
) ) )
201197, 198, 199, 200syl3an 1216 . . . . . . 7  |-  ( ( ( A  -  1 )  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  ->  (
( A  -  1 )  <_  B  <->  ( ( A  -  1 )  -  C )  <_ 
( B  -  C
) ) )
20213, 4, 5, 201syl3anc 1174 . . . . . 6  |-  ( ph  ->  ( ( A  - 
1 )  <_  B  <->  ( ( A  -  1 )  -  C )  <_  ( B  -  C ) ) )
203196, 202mpbid 145 . . . . 5  |-  ( ph  ->  ( ( A  - 
1 )  -  C
)  <_  ( B  -  C ) )
204 lediv1 8302 . . . . . 6  |-  ( ( ( ( A  - 
1 )  -  C
)  e.  RR  /\  ( B  -  C
)  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  ->  ( (
( A  -  1 )  -  C )  <_  ( B  -  C )  <->  ( (
( A  -  1 )  -  C )  /  N )  <_ 
( ( B  -  C )  /  N
) ) )
20556, 87, 62, 204syl3anc 1174 . . . . 5  |-  ( ph  ->  ( ( ( A  -  1 )  -  C )  <_  ( B  -  C )  <->  ( ( ( A  - 
1 )  -  C
)  /  N )  <_  ( ( B  -  C )  /  N ) ) )
206203, 205mpbid 145 . . . 4  |-  ( ph  ->  ( ( ( A  -  1 )  -  C )  /  N
)  <_  ( ( B  -  C )  /  N ) )
207 flqword2 9661 . . . 4  |-  ( ( ( ( ( A  -  1 )  -  C )  /  N
)  e.  QQ  /\  ( ( B  -  C )  /  N
)  e.  QQ  /\  ( ( ( A  -  1 )  -  C )  /  N
)  <_  ( ( B  -  C )  /  N ) )  -> 
( |_ `  (
( B  -  C
)  /  N ) )  e.  ( ZZ>= `  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )
20816, 9, 206, 207syl3anc 1174 . . 3  |-  ( ph  ->  ( |_ `  (
( B  -  C
)  /  N ) )  e.  ( ZZ>= `  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )
209 uznn0sub 9019 . . 3  |-  ( ( |_ `  ( ( B  -  C )  /  N ) )  e.  ( ZZ>= `  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  ->  ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) )  e.  NN0 )
210 hashfz1 10156 . . 3  |-  ( ( ( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) )  e.  NN0  ->  ( `  (
1 ... ( ( |_
`  ( ( B  -  C )  /  N ) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) ) )  =  ( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )
211208, 209, 2103syl 17 . 2  |-  ( ph  ->  ( `  ( 1 ... ( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) ) )  =  ( ( |_ `  (
( B  -  C
)  /  N ) )  -  ( |_
`  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )
212194, 211eqtr3d 2122 1  |-  ( ph  ->  ( `  { x  e.  ( A ... B
)  |  N  ||  ( x  -  C
) } )  =  ( ( |_ `  ( ( B  -  C )  /  N
) )  -  ( |_ `  ( ( ( A  -  1 )  -  C )  /  N ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103  DECID wdc 780    = wceq 1289    e. wcel 1438    =/= wne 2255   A.wral 2359   {crab 2363   class class class wbr 3837   ` cfv 5002  (class class class)co 5634    ~~ cen 6435   Fincfn 6437   CCcc 7327   RRcr 7328   0cc0 7329   1c1 7330    + caddc 7332    x. cmul 7334    < clt 7501    <_ cle 7502    - cmin 7632   # cap 8034    / cdiv 8113   NNcn 8394   NN0cn0 8643   ZZcz 8720   ZZ>=cuz 8988   QQcq 9073   ...cfz 9393   |_cfl 9640  ♯chash 10148    || cdvds 10878
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-1o 6163  df-er 6272  df-en 6438  df-dom 6439  df-fin 6440  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-n0 8644  df-z 8721  df-uz 8989  df-q 9074  df-rp 9104  df-fz 9394  df-fl 9642  df-mod 9695  df-ihash 10149  df-dvds 10879
This theorem is referenced by:  phiprmpw  11280
  Copyright terms: Public domain W3C validator