ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en3d GIF version

Theorem en3d 6727
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
en3d.1 (𝜑𝐴 ∈ V)
en3d.2 (𝜑𝐵 ∈ V)
en3d.3 (𝜑 → (𝑥𝐴𝐶𝐵))
en3d.4 (𝜑 → (𝑦𝐵𝐷𝐴))
en3d.5 (𝜑 → ((𝑥𝐴𝑦𝐵) → (𝑥 = 𝐷𝑦 = 𝐶)))
Assertion
Ref Expression
en3d (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem en3d
StepHypRef Expression
1 en3d.1 . 2 (𝜑𝐴 ∈ V)
2 en3d.2 . 2 (𝜑𝐵 ∈ V)
3 eqid 2164 . . 3 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
4 en3d.3 . . . 4 (𝜑 → (𝑥𝐴𝐶𝐵))
54imp 123 . . 3 ((𝜑𝑥𝐴) → 𝐶𝐵)
6 en3d.4 . . . 4 (𝜑 → (𝑦𝐵𝐷𝐴))
76imp 123 . . 3 ((𝜑𝑦𝐵) → 𝐷𝐴)
8 en3d.5 . . . 4 (𝜑 → ((𝑥𝐴𝑦𝐵) → (𝑥 = 𝐷𝑦 = 𝐶)))
98imp 123 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
103, 5, 7, 9f1o2d 6038 . 2 (𝜑 → (𝑥𝐴𝐶):𝐴1-1-onto𝐵)
11 f1oen2g 6713 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ (𝑥𝐴𝐶):𝐴1-1-onto𝐵) → 𝐴𝐵)
121, 2, 10, 11syl3anc 1227 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1342  wcel 2135  Vcvv 2722   class class class wbr 3977  cmpt 4038  1-1-ontowf1o 5182  cen 6696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4095  ax-pow 4148  ax-pr 4182  ax-un 4406
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2724  df-un 3116  df-in 3118  df-ss 3125  df-pw 3556  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-br 3978  df-opab 4039  df-mpt 4040  df-id 4266  df-xp 4605  df-rel 4606  df-cnv 4607  df-co 4608  df-dm 4609  df-rn 4610  df-fun 5185  df-fn 5186  df-f 5187  df-f1 5188  df-fo 5189  df-f1o 5190  df-en 6699
This theorem is referenced by:  en3i  6729  fundmen  6764  mapen  6804  mapxpen  6806  ssenen  6809  fzen  9969  uzennn  10362  hashfacen  10739  hashdvds  12142
  Copyright terms: Public domain W3C validator