ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en3d GIF version

Theorem en3d 6671
Description: Equinumerosity inference from an implicit one-to-one onto function. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 12-May-2014.)
Hypotheses
Ref Expression
en3d.1 (𝜑𝐴 ∈ V)
en3d.2 (𝜑𝐵 ∈ V)
en3d.3 (𝜑 → (𝑥𝐴𝐶𝐵))
en3d.4 (𝜑 → (𝑦𝐵𝐷𝐴))
en3d.5 (𝜑 → ((𝑥𝐴𝑦𝐵) → (𝑥 = 𝐷𝑦 = 𝐶)))
Assertion
Ref Expression
en3d (𝜑𝐴𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem en3d
StepHypRef Expression
1 en3d.1 . 2 (𝜑𝐴 ∈ V)
2 en3d.2 . 2 (𝜑𝐵 ∈ V)
3 eqid 2140 . . 3 (𝑥𝐴𝐶) = (𝑥𝐴𝐶)
4 en3d.3 . . . 4 (𝜑 → (𝑥𝐴𝐶𝐵))
54imp 123 . . 3 ((𝜑𝑥𝐴) → 𝐶𝐵)
6 en3d.4 . . . 4 (𝜑 → (𝑦𝐵𝐷𝐴))
76imp 123 . . 3 ((𝜑𝑦𝐵) → 𝐷𝐴)
8 en3d.5 . . . 4 (𝜑 → ((𝑥𝐴𝑦𝐵) → (𝑥 = 𝐷𝑦 = 𝐶)))
98imp 123 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝑥 = 𝐷𝑦 = 𝐶))
103, 5, 7, 9f1o2d 5983 . 2 (𝜑 → (𝑥𝐴𝐶):𝐴1-1-onto𝐵)
11 f1oen2g 6657 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ (𝑥𝐴𝐶):𝐴1-1-onto𝐵) → 𝐴𝐵)
121, 2, 10, 11syl3anc 1217 1 (𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  Vcvv 2689   class class class wbr 3937  cmpt 3997  1-1-ontowf1o 5130  cen 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-en 6643
This theorem is referenced by:  en3i  6673  fundmen  6708  mapen  6748  mapxpen  6750  ssenen  6753  fzen  9854  uzennn  10240  hashfacen  10611  hashdvds  11933
  Copyright terms: Public domain W3C validator