ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulclnq0 Unicode version

Theorem mulclnq0 7284
Description: Closure of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 30-Nov-2019.)
Assertion
Ref Expression
mulclnq0  |-  ( ( A  e. Q0  /\  B  e. Q0 )  ->  ( A ·Q0  B )  e. Q0 )

Proof of Theorem mulclnq0
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nq0 7257 . . 3  |- Q0  =  ( ( om 
X.  N. ) /. ~Q0  )
2 oveq1 5789 . . . 4  |-  ( [
<. x ,  y >. ] ~Q0  =  A  ->  ( [ <. x ,  y >. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  )  =  ( A ·Q0  [ <. z ,  w >. ] ~Q0  ) )
32eleq1d 2209 . . 3  |-  ( [
<. x ,  y >. ] ~Q0  =  A  ->  ( ( [ <. x ,  y
>. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  )  e.  ( ( om  X.  N. ) /. ~Q0  )  <-> 
( A ·Q0  [ <. z ,  w >. ] ~Q0  )  e.  ( ( om  X.  N. ) /. ~Q0  ) ) )
4 oveq2 5790 . . . 4  |-  ( [
<. z ,  w >. ] ~Q0  =  B  ->  ( A ·Q0  [ <. z ,  w >. ] ~Q0  )  =  ( A ·Q0  B ) )
54eleq1d 2209 . . 3  |-  ( [
<. z ,  w >. ] ~Q0  =  B  ->  ( ( A ·Q0  [ <. z ,  w >. ] ~Q0  )  e.  ( ( om  X.  N. ) /. ~Q0  )  <-> 
( A ·Q0 
B )  e.  ( ( om  X.  N. ) /. ~Q0  ) ) )
6 mulnnnq0 7282 . . . 4  |-  ( ( ( x  e.  om  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  )  =  [ <. (
x  .o  z ) ,  ( y  .o  w ) >. ] ~Q0  )
7 nnmcl 6385 . . . . . . 7  |-  ( ( x  e.  om  /\  z  e.  om )  ->  ( x  .o  z
)  e.  om )
8 mulpiord 7149 . . . . . . . 8  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  =  ( y  .o  w ) )
9 mulclpi 7160 . . . . . . . 8  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  e.  N. )
108, 9eqeltrrd 2218 . . . . . . 7  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .o  w
)  e.  N. )
117, 10anim12i 336 . . . . . 6  |-  ( ( ( x  e.  om  /\  z  e.  om )  /\  ( y  e.  N.  /\  w  e.  N. )
)  ->  ( (
x  .o  z )  e.  om  /\  (
y  .o  w )  e.  N. ) )
1211an4s 578 . . . . 5  |-  ( ( ( x  e.  om  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( (
x  .o  z )  e.  om  /\  (
y  .o  w )  e.  N. ) )
13 opelxpi 4579 . . . . 5  |-  ( ( ( x  .o  z
)  e.  om  /\  ( y  .o  w
)  e.  N. )  -> 
<. ( x  .o  z
) ,  ( y  .o  w ) >.  e.  ( om  X.  N. ) )
14 enq0ex 7271 . . . . . 6  |- ~Q0  e.  _V
1514ecelqsi 6491 . . . . 5  |-  ( <.
( x  .o  z
) ,  ( y  .o  w ) >.  e.  ( om  X.  N. )  ->  [ <. (
x  .o  z ) ,  ( y  .o  w ) >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
1612, 13, 153syl 17 . . . 4  |-  ( ( ( x  e.  om  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  [ <. (
x  .o  z ) ,  ( y  .o  w ) >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
176, 16eqeltrd 2217 . . 3  |-  ( ( ( x  e.  om  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  )  e.  ( ( om  X.  N. ) /. ~Q0  ) )
181, 3, 5, 172ecoptocl 6525 . 2  |-  ( ( A  e. Q0  /\  B  e. Q0 )  ->  ( A ·Q0  B )  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
1918, 1eleqtrrdi 2234 1  |-  ( ( A  e. Q0  /\  B  e. Q0 )  ->  ( A ·Q0  B )  e. Q0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   <.cop 3535   omcom 4512    X. cxp 4545  (class class class)co 5782    .o comu 6319   [cec 6435   /.cqs 6436   N.cnpi 7104    .N cmi 7106   ~Q0 ceq0 7118  Q0cnq0 7119   ·Q0 cmq0 7122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-mi 7138  df-enq0 7256  df-nq0 7257  df-mq0 7260
This theorem is referenced by:  prarloclemcalc  7334
  Copyright terms: Public domain W3C validator