ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulclnq0 Unicode version

Theorem mulclnq0 7481
Description: Closure of multiplication on nonnegative fractions. (Contributed by Jim Kingdon, 30-Nov-2019.)
Assertion
Ref Expression
mulclnq0  |-  ( ( A  e. Q0  /\  B  e. Q0 )  ->  ( A ·Q0  B )  e. Q0 )

Proof of Theorem mulclnq0
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nq0 7454 . . 3  |- Q0  =  ( ( om 
X.  N. ) /. ~Q0  )
2 oveq1 5903 . . . 4  |-  ( [
<. x ,  y >. ] ~Q0  =  A  ->  ( [ <. x ,  y >. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  )  =  ( A ·Q0  [ <. z ,  w >. ] ~Q0  ) )
32eleq1d 2258 . . 3  |-  ( [
<. x ,  y >. ] ~Q0  =  A  ->  ( ( [ <. x ,  y
>. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  )  e.  ( ( om  X.  N. ) /. ~Q0  )  <-> 
( A ·Q0  [ <. z ,  w >. ] ~Q0  )  e.  ( ( om  X.  N. ) /. ~Q0  ) ) )
4 oveq2 5904 . . . 4  |-  ( [
<. z ,  w >. ] ~Q0  =  B  ->  ( A ·Q0  [ <. z ,  w >. ] ~Q0  )  =  ( A ·Q0  B ) )
54eleq1d 2258 . . 3  |-  ( [
<. z ,  w >. ] ~Q0  =  B  ->  ( ( A ·Q0  [ <. z ,  w >. ] ~Q0  )  e.  ( ( om  X.  N. ) /. ~Q0  )  <-> 
( A ·Q0 
B )  e.  ( ( om  X.  N. ) /. ~Q0  ) ) )
6 mulnnnq0 7479 . . . 4  |-  ( ( ( x  e.  om  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  )  =  [ <. (
x  .o  z ) ,  ( y  .o  w ) >. ] ~Q0  )
7 nnmcl 6506 . . . . . . 7  |-  ( ( x  e.  om  /\  z  e.  om )  ->  ( x  .o  z
)  e.  om )
8 mulpiord 7346 . . . . . . . 8  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  =  ( y  .o  w ) )
9 mulclpi 7357 . . . . . . . 8  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .N  w
)  e.  N. )
108, 9eqeltrrd 2267 . . . . . . 7  |-  ( ( y  e.  N.  /\  w  e.  N. )  ->  ( y  .o  w
)  e.  N. )
117, 10anim12i 338 . . . . . 6  |-  ( ( ( x  e.  om  /\  z  e.  om )  /\  ( y  e.  N.  /\  w  e.  N. )
)  ->  ( (
x  .o  z )  e.  om  /\  (
y  .o  w )  e.  N. ) )
1211an4s 588 . . . . 5  |-  ( ( ( x  e.  om  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( (
x  .o  z )  e.  om  /\  (
y  .o  w )  e.  N. ) )
13 opelxpi 4676 . . . . 5  |-  ( ( ( x  .o  z
)  e.  om  /\  ( y  .o  w
)  e.  N. )  -> 
<. ( x  .o  z
) ,  ( y  .o  w ) >.  e.  ( om  X.  N. ) )
14 enq0ex 7468 . . . . . 6  |- ~Q0  e.  _V
1514ecelqsi 6615 . . . . 5  |-  ( <.
( x  .o  z
) ,  ( y  .o  w ) >.  e.  ( om  X.  N. )  ->  [ <. (
x  .o  z ) ,  ( y  .o  w ) >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
1612, 13, 153syl 17 . . . 4  |-  ( ( ( x  e.  om  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  [ <. (
x  .o  z ) ,  ( y  .o  w ) >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
176, 16eqeltrd 2266 . . 3  |-  ( ( ( x  e.  om  /\  y  e.  N. )  /\  ( z  e.  om  /\  w  e.  N. )
)  ->  ( [ <. x ,  y >. ] ~Q0 ·Q0  [ <. z ,  w >. ] ~Q0  )  e.  ( ( om  X.  N. ) /. ~Q0  ) )
181, 3, 5, 172ecoptocl 6649 . 2  |-  ( ( A  e. Q0  /\  B  e. Q0 )  ->  ( A ·Q0  B )  e.  ( ( om 
X.  N. ) /. ~Q0  ) )
1918, 1eleqtrrdi 2283 1  |-  ( ( A  e. Q0  /\  B  e. Q0 )  ->  ( A ·Q0  B )  e. Q0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   <.cop 3610   omcom 4607    X. cxp 4642  (class class class)co 5896    .o comu 6439   [cec 6557   /.cqs 6558   N.cnpi 7301    .N cmi 7303   ~Q0 ceq0 7315  Q0cnq0 7316   ·Q0 cmq0 7319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-irdg 6395  df-oadd 6445  df-omul 6446  df-er 6559  df-ec 6561  df-qs 6565  df-ni 7333  df-mi 7335  df-enq0 7453  df-nq0 7454  df-mq0 7457
This theorem is referenced by:  prarloclemcalc  7531
  Copyright terms: Public domain W3C validator