ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1imaeng Unicode version

Theorem f1imaeng 6883
Description: A one-to-one function's image under a subset of its domain is equinumerous to the subset. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
f1imaeng  |-  ( ( F : A -1-1-> B  /\  C  C_  A  /\  C  e.  V )  ->  ( F " C
)  ~~  C )

Proof of Theorem f1imaeng
StepHypRef Expression
1 f1ores 5536 . . 3  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-onto-> ( F " C ) )
2 f1oeng 6847 . . . 4  |-  ( ( C  e.  V  /\  ( F  |`  C ) : C -1-1-onto-> ( F " C
) )  ->  C  ~~  ( F " C
) )
32ancoms 268 . . 3  |-  ( ( ( F  |`  C ) : C -1-1-onto-> ( F " C
)  /\  C  e.  V )  ->  C  ~~  ( F " C
) )
41, 3stoic3 1450 . 2  |-  ( ( F : A -1-1-> B  /\  C  C_  A  /\  C  e.  V )  ->  C  ~~  ( F
" C ) )
54ensymd 6874 1  |-  ( ( F : A -1-1-> B  /\  C  C_  A  /\  C  e.  V )  ->  ( F " C
)  ~~  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    e. wcel 2175    C_ wss 3165   class class class wbr 4043    |` cres 4676   "cima 4677   -1-1->wf1 5267   -1-1-onto->wf1o 5269    ~~ cen 6824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-er 6619  df-en 6827
This theorem is referenced by:  f1imaen  6885  isinfinf  6993  f1finf1o  7048  phimullem  12518
  Copyright terms: Public domain W3C validator