ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1imaeng Unicode version

Theorem f1imaeng 6770
Description: A one-to-one function's image under a subset of its domain is equinumerous to the subset. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
f1imaeng  |-  ( ( F : A -1-1-> B  /\  C  C_  A  /\  C  e.  V )  ->  ( F " C
)  ~~  C )

Proof of Theorem f1imaeng
StepHypRef Expression
1 f1ores 5457 . . 3  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-onto-> ( F " C ) )
2 f1oeng 6735 . . . 4  |-  ( ( C  e.  V  /\  ( F  |`  C ) : C -1-1-onto-> ( F " C
) )  ->  C  ~~  ( F " C
) )
32ancoms 266 . . 3  |-  ( ( ( F  |`  C ) : C -1-1-onto-> ( F " C
)  /\  C  e.  V )  ->  C  ~~  ( F " C
) )
41, 3stoic3 1424 . 2  |-  ( ( F : A -1-1-> B  /\  C  C_  A  /\  C  e.  V )  ->  C  ~~  ( F
" C ) )
54ensymd 6761 1  |-  ( ( F : A -1-1-> B  /\  C  C_  A  /\  C  e.  V )  ->  ( F " C
)  ~~  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 973    e. wcel 2141    C_ wss 3121   class class class wbr 3989    |` cres 4613   "cima 4614   -1-1->wf1 5195   -1-1-onto->wf1o 5197    ~~ cen 6716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-er 6513  df-en 6719
This theorem is referenced by:  f1imaen  6772  isinfinf  6875  f1finf1o  6924  phimullem  12179
  Copyright terms: Public domain W3C validator