ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1imaeng Unicode version

Theorem f1imaeng 6758
Description: A one-to-one function's image under a subset of its domain is equinumerous to the subset. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
f1imaeng  |-  ( ( F : A -1-1-> B  /\  C  C_  A  /\  C  e.  V )  ->  ( F " C
)  ~~  C )

Proof of Theorem f1imaeng
StepHypRef Expression
1 f1ores 5447 . . 3  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-onto-> ( F " C ) )
2 f1oeng 6723 . . . 4  |-  ( ( C  e.  V  /\  ( F  |`  C ) : C -1-1-onto-> ( F " C
) )  ->  C  ~~  ( F " C
) )
32ancoms 266 . . 3  |-  ( ( ( F  |`  C ) : C -1-1-onto-> ( F " C
)  /\  C  e.  V )  ->  C  ~~  ( F " C
) )
41, 3stoic3 1419 . 2  |-  ( ( F : A -1-1-> B  /\  C  C_  A  /\  C  e.  V )  ->  C  ~~  ( F
" C ) )
54ensymd 6749 1  |-  ( ( F : A -1-1-> B  /\  C  C_  A  /\  C  e.  V )  ->  ( F " C
)  ~~  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 968    e. wcel 2136    C_ wss 3116   class class class wbr 3982    |` cres 4606   "cima 4607   -1-1->wf1 5185   -1-1-onto->wf1o 5187    ~~ cen 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-er 6501  df-en 6707
This theorem is referenced by:  f1imaen  6760  isinfinf  6863  f1finf1o  6912  phimullem  12157
  Copyright terms: Public domain W3C validator