ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negf1o Unicode version

Theorem negf1o 8301
Description: Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020.)
Hypothesis
Ref Expression
negf1o.1  |-  F  =  ( x  e.  A  |-> 
-u x )
Assertion
Ref Expression
negf1o  |-  ( A 
C_  RR  ->  F : A
-1-1-onto-> { n  e.  RR  |  -u n  e.  A } )
Distinct variable group:    A, n, x
Allowed substitution hints:    F( x, n)

Proof of Theorem negf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 negf1o.1 . . 3  |-  F  =  ( x  e.  A  |-> 
-u x )
2 ssel 3141 . . . . . 6  |-  ( A 
C_  RR  ->  ( x  e.  A  ->  x  e.  RR ) )
3 renegcl 8180 . . . . . 6  |-  ( x  e.  RR  ->  -u x  e.  RR )
42, 3syl6 33 . . . . 5  |-  ( A 
C_  RR  ->  ( x  e.  A  ->  -u x  e.  RR ) )
54imp 123 . . . 4  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  -u x  e.  RR )
62imp 123 . . . . 5  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  x  e.  RR )
7 recn 7907 . . . . . . . . 9  |-  ( x  e.  RR  ->  x  e.  CC )
8 negneg 8169 . . . . . . . . . 10  |-  ( x  e.  CC  ->  -u -u x  =  x )
98eqcomd 2176 . . . . . . . . 9  |-  ( x  e.  CC  ->  x  =  -u -u x )
107, 9syl 14 . . . . . . . 8  |-  ( x  e.  RR  ->  x  =  -u -u x )
1110eleq1d 2239 . . . . . . 7  |-  ( x  e.  RR  ->  (
x  e.  A  <->  -u -u x  e.  A ) )
1211biimpcd 158 . . . . . 6  |-  ( x  e.  A  ->  (
x  e.  RR  ->  -u -u x  e.  A ) )
1312adantl 275 . . . . 5  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  (
x  e.  RR  ->  -u -u x  e.  A ) )
146, 13mpd 13 . . . 4  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  -u -u x  e.  A )
15 negeq 8112 . . . . . 6  |-  ( n  =  -u x  ->  -u n  =  -u -u x )
1615eleq1d 2239 . . . . 5  |-  ( n  =  -u x  ->  ( -u n  e.  A  <->  -u -u x  e.  A ) )
1716elrab 2886 . . . 4  |-  ( -u x  e.  { n  e.  RR  |  -u n  e.  A }  <->  ( -u x  e.  RR  /\  -u -u x  e.  A ) )
185, 14, 17sylanbrc 415 . . 3  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  -u x  e.  { n  e.  RR  |  -u n  e.  A } )
19 negeq 8112 . . . . . . 7  |-  ( n  =  y  ->  -u n  =  -u y )
2019eleq1d 2239 . . . . . 6  |-  ( n  =  y  ->  ( -u n  e.  A  <->  -u y  e.  A ) )
2120elrab 2886 . . . . 5  |-  ( y  e.  { n  e.  RR  |  -u n  e.  A }  <->  ( y  e.  RR  /\  -u y  e.  A ) )
22 simpr 109 . . . . . 6  |-  ( ( y  e.  RR  /\  -u y  e.  A )  ->  -u y  e.  A
)
2322a1i 9 . . . . 5  |-  ( A 
C_  RR  ->  ( ( y  e.  RR  /\  -u y  e.  A )  ->  -u y  e.  A
) )
2421, 23syl5bi 151 . . . 4  |-  ( A 
C_  RR  ->  ( y  e.  { n  e.  RR  |  -u n  e.  A }  ->  -u y  e.  A ) )
2524imp 123 . . 3  |-  ( ( A  C_  RR  /\  y  e.  { n  e.  RR  |  -u n  e.  A } )  ->  -u y  e.  A )
262, 7syl6com 35 . . . . . . . . . 10  |-  ( x  e.  A  ->  ( A  C_  RR  ->  x  e.  CC ) )
2726adantl 275 . . . . . . . . 9  |-  ( ( ( y  e.  RR  /\  -u y  e.  A
)  /\  x  e.  A )  ->  ( A  C_  RR  ->  x  e.  CC ) )
2827imp 123 . . . . . . . 8  |-  ( ( ( ( y  e.  RR  /\  -u y  e.  A )  /\  x  e.  A )  /\  A  C_  RR )  ->  x  e.  CC )
29 recn 7907 . . . . . . . . 9  |-  ( y  e.  RR  ->  y  e.  CC )
3029ad3antrrr 489 . . . . . . . 8  |-  ( ( ( ( y  e.  RR  /\  -u y  e.  A )  /\  x  e.  A )  /\  A  C_  RR )  ->  y  e.  CC )
31 negcon2 8172 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  =  -u y 
<->  y  =  -u x
) )
3228, 30, 31syl2anc 409 . . . . . . 7  |-  ( ( ( ( y  e.  RR  /\  -u y  e.  A )  /\  x  e.  A )  /\  A  C_  RR )  ->  (
x  =  -u y  <->  y  =  -u x ) )
3332exp31 362 . . . . . 6  |-  ( ( y  e.  RR  /\  -u y  e.  A )  ->  ( x  e.  A  ->  ( A  C_  RR  ->  ( x  =  -u y  <->  y  =  -u x ) ) ) )
3421, 33sylbi 120 . . . . 5  |-  ( y  e.  { n  e.  RR  |  -u n  e.  A }  ->  (
x  e.  A  -> 
( A  C_  RR  ->  ( x  =  -u y 
<->  y  =  -u x
) ) ) )
3534impcom 124 . . . 4  |-  ( ( x  e.  A  /\  y  e.  { n  e.  RR  |  -u n  e.  A } )  -> 
( A  C_  RR  ->  ( x  =  -u y 
<->  y  =  -u x
) ) )
3635impcom 124 . . 3  |-  ( ( A  C_  RR  /\  (
x  e.  A  /\  y  e.  { n  e.  RR  |  -u n  e.  A } ) )  ->  ( x  = 
-u y  <->  y  =  -u x ) )
371, 18, 25, 36f1ocnv2d 6053 . 2  |-  ( A 
C_  RR  ->  ( F : A -1-1-onto-> { n  e.  RR  |  -u n  e.  A }  /\  `' F  =  ( y  e.  {
n  e.  RR  |  -u n  e.  A }  |-> 
-u y ) ) )
3837simpld 111 1  |-  ( A 
C_  RR  ->  F : A
-1-1-onto-> { n  e.  RR  |  -u n  e.  A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   {crab 2452    C_ wss 3121    |-> cmpt 4050   `'ccnv 4610   -1-1-onto->wf1o 5197   CCcc 7772   RRcr 7773   -ucneg 8091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521  ax-resscn 7866  ax-1cn 7867  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-sub 8092  df-neg 8093
This theorem is referenced by:  negfi  11191
  Copyright terms: Public domain W3C validator