Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negf1o | Unicode version |
Description: Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020.) |
Ref | Expression |
---|---|
negf1o.1 |
Ref | Expression |
---|---|
negf1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negf1o.1 | . . 3 | |
2 | ssel 3136 | . . . . . 6 | |
3 | renegcl 8159 | . . . . . 6 | |
4 | 2, 3 | syl6 33 | . . . . 5 |
5 | 4 | imp 123 | . . . 4 |
6 | 2 | imp 123 | . . . . 5 |
7 | recn 7886 | . . . . . . . . 9 | |
8 | negneg 8148 | . . . . . . . . . 10 | |
9 | 8 | eqcomd 2171 | . . . . . . . . 9 |
10 | 7, 9 | syl 14 | . . . . . . . 8 |
11 | 10 | eleq1d 2235 | . . . . . . 7 |
12 | 11 | biimpcd 158 | . . . . . 6 |
13 | 12 | adantl 275 | . . . . 5 |
14 | 6, 13 | mpd 13 | . . . 4 |
15 | negeq 8091 | . . . . . 6 | |
16 | 15 | eleq1d 2235 | . . . . 5 |
17 | 16 | elrab 2882 | . . . 4 |
18 | 5, 14, 17 | sylanbrc 414 | . . 3 |
19 | negeq 8091 | . . . . . . 7 | |
20 | 19 | eleq1d 2235 | . . . . . 6 |
21 | 20 | elrab 2882 | . . . . 5 |
22 | simpr 109 | . . . . . 6 | |
23 | 22 | a1i 9 | . . . . 5 |
24 | 21, 23 | syl5bi 151 | . . . 4 |
25 | 24 | imp 123 | . . 3 |
26 | 2, 7 | syl6com 35 | . . . . . . . . . 10 |
27 | 26 | adantl 275 | . . . . . . . . 9 |
28 | 27 | imp 123 | . . . . . . . 8 |
29 | recn 7886 | . . . . . . . . 9 | |
30 | 29 | ad3antrrr 484 | . . . . . . . 8 |
31 | negcon2 8151 | . . . . . . . 8 | |
32 | 28, 30, 31 | syl2anc 409 | . . . . . . 7 |
33 | 32 | exp31 362 | . . . . . 6 |
34 | 21, 33 | sylbi 120 | . . . . 5 |
35 | 34 | impcom 124 | . . . 4 |
36 | 35 | impcom 124 | . . 3 |
37 | 1, 18, 25, 36 | f1ocnv2d 6042 | . 2 |
38 | 37 | simpld 111 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 crab 2448 wss 3116 cmpt 4043 ccnv 4603 wf1o 5187 cc 7751 cr 7752 cneg 8070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-sub 8071 df-neg 8072 |
This theorem is referenced by: negfi 11169 |
Copyright terms: Public domain | W3C validator |