| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negf1o | Unicode version | ||
| Description: Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020.) |
| Ref | Expression |
|---|---|
| negf1o.1 |
|
| Ref | Expression |
|---|---|
| negf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negf1o.1 |
. . 3
| |
| 2 | ssel 3178 |
. . . . . 6
| |
| 3 | renegcl 8304 |
. . . . . 6
| |
| 4 | 2, 3 | syl6 33 |
. . . . 5
|
| 5 | 4 | imp 124 |
. . . 4
|
| 6 | 2 | imp 124 |
. . . . 5
|
| 7 | recn 8029 |
. . . . . . . . 9
| |
| 8 | negneg 8293 |
. . . . . . . . . 10
| |
| 9 | 8 | eqcomd 2202 |
. . . . . . . . 9
|
| 10 | 7, 9 | syl 14 |
. . . . . . . 8
|
| 11 | 10 | eleq1d 2265 |
. . . . . . 7
|
| 12 | 11 | biimpcd 159 |
. . . . . 6
|
| 13 | 12 | adantl 277 |
. . . . 5
|
| 14 | 6, 13 | mpd 13 |
. . . 4
|
| 15 | negeq 8236 |
. . . . . 6
| |
| 16 | 15 | eleq1d 2265 |
. . . . 5
|
| 17 | 16 | elrab 2920 |
. . . 4
|
| 18 | 5, 14, 17 | sylanbrc 417 |
. . 3
|
| 19 | negeq 8236 |
. . . . . . 7
| |
| 20 | 19 | eleq1d 2265 |
. . . . . 6
|
| 21 | 20 | elrab 2920 |
. . . . 5
|
| 22 | simpr 110 |
. . . . . 6
| |
| 23 | 22 | a1i 9 |
. . . . 5
|
| 24 | 21, 23 | biimtrid 152 |
. . . 4
|
| 25 | 24 | imp 124 |
. . 3
|
| 26 | 2, 7 | syl6com 35 |
. . . . . . . . . 10
|
| 27 | 26 | adantl 277 |
. . . . . . . . 9
|
| 28 | 27 | imp 124 |
. . . . . . . 8
|
| 29 | recn 8029 |
. . . . . . . . 9
| |
| 30 | 29 | ad3antrrr 492 |
. . . . . . . 8
|
| 31 | negcon2 8296 |
. . . . . . . 8
| |
| 32 | 28, 30, 31 | syl2anc 411 |
. . . . . . 7
|
| 33 | 32 | exp31 364 |
. . . . . 6
|
| 34 | 21, 33 | sylbi 121 |
. . . . 5
|
| 35 | 34 | impcom 125 |
. . . 4
|
| 36 | 35 | impcom 125 |
. . 3
|
| 37 | 1, 18, 25, 36 | f1ocnv2d 6131 |
. 2
|
| 38 | 37 | simpld 112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7988 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8216 df-neg 8217 |
| This theorem is referenced by: negfi 11410 |
| Copyright terms: Public domain | W3C validator |