Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negf1o | Unicode version |
Description: Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020.) |
Ref | Expression |
---|---|
negf1o.1 |
Ref | Expression |
---|---|
negf1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negf1o.1 | . . 3 | |
2 | ssel 3141 | . . . . . 6 | |
3 | renegcl 8180 | . . . . . 6 | |
4 | 2, 3 | syl6 33 | . . . . 5 |
5 | 4 | imp 123 | . . . 4 |
6 | 2 | imp 123 | . . . . 5 |
7 | recn 7907 | . . . . . . . . 9 | |
8 | negneg 8169 | . . . . . . . . . 10 | |
9 | 8 | eqcomd 2176 | . . . . . . . . 9 |
10 | 7, 9 | syl 14 | . . . . . . . 8 |
11 | 10 | eleq1d 2239 | . . . . . . 7 |
12 | 11 | biimpcd 158 | . . . . . 6 |
13 | 12 | adantl 275 | . . . . 5 |
14 | 6, 13 | mpd 13 | . . . 4 |
15 | negeq 8112 | . . . . . 6 | |
16 | 15 | eleq1d 2239 | . . . . 5 |
17 | 16 | elrab 2886 | . . . 4 |
18 | 5, 14, 17 | sylanbrc 415 | . . 3 |
19 | negeq 8112 | . . . . . . 7 | |
20 | 19 | eleq1d 2239 | . . . . . 6 |
21 | 20 | elrab 2886 | . . . . 5 |
22 | simpr 109 | . . . . . 6 | |
23 | 22 | a1i 9 | . . . . 5 |
24 | 21, 23 | syl5bi 151 | . . . 4 |
25 | 24 | imp 123 | . . 3 |
26 | 2, 7 | syl6com 35 | . . . . . . . . . 10 |
27 | 26 | adantl 275 | . . . . . . . . 9 |
28 | 27 | imp 123 | . . . . . . . 8 |
29 | recn 7907 | . . . . . . . . 9 | |
30 | 29 | ad3antrrr 489 | . . . . . . . 8 |
31 | negcon2 8172 | . . . . . . . 8 | |
32 | 28, 30, 31 | syl2anc 409 | . . . . . . 7 |
33 | 32 | exp31 362 | . . . . . 6 |
34 | 21, 33 | sylbi 120 | . . . . 5 |
35 | 34 | impcom 124 | . . . 4 |
36 | 35 | impcom 124 | . . 3 |
37 | 1, 18, 25, 36 | f1ocnv2d 6053 | . 2 |
38 | 37 | simpld 111 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 crab 2452 wss 3121 cmpt 4050 ccnv 4610 wf1o 5197 cc 7772 cr 7773 cneg 8091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-neg 8093 |
This theorem is referenced by: negfi 11191 |
Copyright terms: Public domain | W3C validator |