ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negf1o Unicode version

Theorem negf1o 8454
Description: Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020.)
Hypothesis
Ref Expression
negf1o.1  |-  F  =  ( x  e.  A  |-> 
-u x )
Assertion
Ref Expression
negf1o  |-  ( A 
C_  RR  ->  F : A
-1-1-onto-> { n  e.  RR  |  -u n  e.  A } )
Distinct variable group:    A, n, x
Allowed substitution hints:    F( x, n)

Proof of Theorem negf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 negf1o.1 . . 3  |-  F  =  ( x  e.  A  |-> 
-u x )
2 ssel 3187 . . . . . 6  |-  ( A 
C_  RR  ->  ( x  e.  A  ->  x  e.  RR ) )
3 renegcl 8333 . . . . . 6  |-  ( x  e.  RR  ->  -u x  e.  RR )
42, 3syl6 33 . . . . 5  |-  ( A 
C_  RR  ->  ( x  e.  A  ->  -u x  e.  RR ) )
54imp 124 . . . 4  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  -u x  e.  RR )
62imp 124 . . . . 5  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  x  e.  RR )
7 recn 8058 . . . . . . . . 9  |-  ( x  e.  RR  ->  x  e.  CC )
8 negneg 8322 . . . . . . . . . 10  |-  ( x  e.  CC  ->  -u -u x  =  x )
98eqcomd 2211 . . . . . . . . 9  |-  ( x  e.  CC  ->  x  =  -u -u x )
107, 9syl 14 . . . . . . . 8  |-  ( x  e.  RR  ->  x  =  -u -u x )
1110eleq1d 2274 . . . . . . 7  |-  ( x  e.  RR  ->  (
x  e.  A  <->  -u -u x  e.  A ) )
1211biimpcd 159 . . . . . 6  |-  ( x  e.  A  ->  (
x  e.  RR  ->  -u -u x  e.  A ) )
1312adantl 277 . . . . 5  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  (
x  e.  RR  ->  -u -u x  e.  A ) )
146, 13mpd 13 . . . 4  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  -u -u x  e.  A )
15 negeq 8265 . . . . . 6  |-  ( n  =  -u x  ->  -u n  =  -u -u x )
1615eleq1d 2274 . . . . 5  |-  ( n  =  -u x  ->  ( -u n  e.  A  <->  -u -u x  e.  A ) )
1716elrab 2929 . . . 4  |-  ( -u x  e.  { n  e.  RR  |  -u n  e.  A }  <->  ( -u x  e.  RR  /\  -u -u x  e.  A ) )
185, 14, 17sylanbrc 417 . . 3  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  -u x  e.  { n  e.  RR  |  -u n  e.  A } )
19 negeq 8265 . . . . . . 7  |-  ( n  =  y  ->  -u n  =  -u y )
2019eleq1d 2274 . . . . . 6  |-  ( n  =  y  ->  ( -u n  e.  A  <->  -u y  e.  A ) )
2120elrab 2929 . . . . 5  |-  ( y  e.  { n  e.  RR  |  -u n  e.  A }  <->  ( y  e.  RR  /\  -u y  e.  A ) )
22 simpr 110 . . . . . 6  |-  ( ( y  e.  RR  /\  -u y  e.  A )  ->  -u y  e.  A
)
2322a1i 9 . . . . 5  |-  ( A 
C_  RR  ->  ( ( y  e.  RR  /\  -u y  e.  A )  ->  -u y  e.  A
) )
2421, 23biimtrid 152 . . . 4  |-  ( A 
C_  RR  ->  ( y  e.  { n  e.  RR  |  -u n  e.  A }  ->  -u y  e.  A ) )
2524imp 124 . . 3  |-  ( ( A  C_  RR  /\  y  e.  { n  e.  RR  |  -u n  e.  A } )  ->  -u y  e.  A )
262, 7syl6com 35 . . . . . . . . . 10  |-  ( x  e.  A  ->  ( A  C_  RR  ->  x  e.  CC ) )
2726adantl 277 . . . . . . . . 9  |-  ( ( ( y  e.  RR  /\  -u y  e.  A
)  /\  x  e.  A )  ->  ( A  C_  RR  ->  x  e.  CC ) )
2827imp 124 . . . . . . . 8  |-  ( ( ( ( y  e.  RR  /\  -u y  e.  A )  /\  x  e.  A )  /\  A  C_  RR )  ->  x  e.  CC )
29 recn 8058 . . . . . . . . 9  |-  ( y  e.  RR  ->  y  e.  CC )
3029ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( y  e.  RR  /\  -u y  e.  A )  /\  x  e.  A )  /\  A  C_  RR )  ->  y  e.  CC )
31 negcon2 8325 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  =  -u y 
<->  y  =  -u x
) )
3228, 30, 31syl2anc 411 . . . . . . 7  |-  ( ( ( ( y  e.  RR  /\  -u y  e.  A )  /\  x  e.  A )  /\  A  C_  RR )  ->  (
x  =  -u y  <->  y  =  -u x ) )
3332exp31 364 . . . . . 6  |-  ( ( y  e.  RR  /\  -u y  e.  A )  ->  ( x  e.  A  ->  ( A  C_  RR  ->  ( x  =  -u y  <->  y  =  -u x ) ) ) )
3421, 33sylbi 121 . . . . 5  |-  ( y  e.  { n  e.  RR  |  -u n  e.  A }  ->  (
x  e.  A  -> 
( A  C_  RR  ->  ( x  =  -u y 
<->  y  =  -u x
) ) ) )
3534impcom 125 . . . 4  |-  ( ( x  e.  A  /\  y  e.  { n  e.  RR  |  -u n  e.  A } )  -> 
( A  C_  RR  ->  ( x  =  -u y 
<->  y  =  -u x
) ) )
3635impcom 125 . . 3  |-  ( ( A  C_  RR  /\  (
x  e.  A  /\  y  e.  { n  e.  RR  |  -u n  e.  A } ) )  ->  ( x  = 
-u y  <->  y  =  -u x ) )
371, 18, 25, 36f1ocnv2d 6150 . 2  |-  ( A 
C_  RR  ->  ( F : A -1-1-onto-> { n  e.  RR  |  -u n  e.  A }  /\  `' F  =  ( y  e.  {
n  e.  RR  |  -u n  e.  A }  |-> 
-u y ) ) )
3837simpld 112 1  |-  ( A 
C_  RR  ->  F : A
-1-1-onto-> { n  e.  RR  |  -u n  e.  A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   {crab 2488    C_ wss 3166    |-> cmpt 4105   `'ccnv 4674   -1-1-onto->wf1o 5270   CCcc 7923   RRcr 7924   -ucneg 8244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585  ax-resscn 8017  ax-1cn 8018  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-sub 8245  df-neg 8246
This theorem is referenced by:  negfi  11539
  Copyright terms: Public domain W3C validator