ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negf1o Unicode version

Theorem negf1o 8489
Description: Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020.)
Hypothesis
Ref Expression
negf1o.1  |-  F  =  ( x  e.  A  |-> 
-u x )
Assertion
Ref Expression
negf1o  |-  ( A 
C_  RR  ->  F : A
-1-1-onto-> { n  e.  RR  |  -u n  e.  A } )
Distinct variable group:    A, n, x
Allowed substitution hints:    F( x, n)

Proof of Theorem negf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 negf1o.1 . . 3  |-  F  =  ( x  e.  A  |-> 
-u x )
2 ssel 3195 . . . . . 6  |-  ( A 
C_  RR  ->  ( x  e.  A  ->  x  e.  RR ) )
3 renegcl 8368 . . . . . 6  |-  ( x  e.  RR  ->  -u x  e.  RR )
42, 3syl6 33 . . . . 5  |-  ( A 
C_  RR  ->  ( x  e.  A  ->  -u x  e.  RR ) )
54imp 124 . . . 4  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  -u x  e.  RR )
62imp 124 . . . . 5  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  x  e.  RR )
7 recn 8093 . . . . . . . . 9  |-  ( x  e.  RR  ->  x  e.  CC )
8 negneg 8357 . . . . . . . . . 10  |-  ( x  e.  CC  ->  -u -u x  =  x )
98eqcomd 2213 . . . . . . . . 9  |-  ( x  e.  CC  ->  x  =  -u -u x )
107, 9syl 14 . . . . . . . 8  |-  ( x  e.  RR  ->  x  =  -u -u x )
1110eleq1d 2276 . . . . . . 7  |-  ( x  e.  RR  ->  (
x  e.  A  <->  -u -u x  e.  A ) )
1211biimpcd 159 . . . . . 6  |-  ( x  e.  A  ->  (
x  e.  RR  ->  -u -u x  e.  A ) )
1312adantl 277 . . . . 5  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  (
x  e.  RR  ->  -u -u x  e.  A ) )
146, 13mpd 13 . . . 4  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  -u -u x  e.  A )
15 negeq 8300 . . . . . 6  |-  ( n  =  -u x  ->  -u n  =  -u -u x )
1615eleq1d 2276 . . . . 5  |-  ( n  =  -u x  ->  ( -u n  e.  A  <->  -u -u x  e.  A ) )
1716elrab 2936 . . . 4  |-  ( -u x  e.  { n  e.  RR  |  -u n  e.  A }  <->  ( -u x  e.  RR  /\  -u -u x  e.  A ) )
185, 14, 17sylanbrc 417 . . 3  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  -u x  e.  { n  e.  RR  |  -u n  e.  A } )
19 negeq 8300 . . . . . . 7  |-  ( n  =  y  ->  -u n  =  -u y )
2019eleq1d 2276 . . . . . 6  |-  ( n  =  y  ->  ( -u n  e.  A  <->  -u y  e.  A ) )
2120elrab 2936 . . . . 5  |-  ( y  e.  { n  e.  RR  |  -u n  e.  A }  <->  ( y  e.  RR  /\  -u y  e.  A ) )
22 simpr 110 . . . . . 6  |-  ( ( y  e.  RR  /\  -u y  e.  A )  ->  -u y  e.  A
)
2322a1i 9 . . . . 5  |-  ( A 
C_  RR  ->  ( ( y  e.  RR  /\  -u y  e.  A )  ->  -u y  e.  A
) )
2421, 23biimtrid 152 . . . 4  |-  ( A 
C_  RR  ->  ( y  e.  { n  e.  RR  |  -u n  e.  A }  ->  -u y  e.  A ) )
2524imp 124 . . 3  |-  ( ( A  C_  RR  /\  y  e.  { n  e.  RR  |  -u n  e.  A } )  ->  -u y  e.  A )
262, 7syl6com 35 . . . . . . . . . 10  |-  ( x  e.  A  ->  ( A  C_  RR  ->  x  e.  CC ) )
2726adantl 277 . . . . . . . . 9  |-  ( ( ( y  e.  RR  /\  -u y  e.  A
)  /\  x  e.  A )  ->  ( A  C_  RR  ->  x  e.  CC ) )
2827imp 124 . . . . . . . 8  |-  ( ( ( ( y  e.  RR  /\  -u y  e.  A )  /\  x  e.  A )  /\  A  C_  RR )  ->  x  e.  CC )
29 recn 8093 . . . . . . . . 9  |-  ( y  e.  RR  ->  y  e.  CC )
3029ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( y  e.  RR  /\  -u y  e.  A )  /\  x  e.  A )  /\  A  C_  RR )  ->  y  e.  CC )
31 negcon2 8360 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  =  -u y 
<->  y  =  -u x
) )
3228, 30, 31syl2anc 411 . . . . . . 7  |-  ( ( ( ( y  e.  RR  /\  -u y  e.  A )  /\  x  e.  A )  /\  A  C_  RR )  ->  (
x  =  -u y  <->  y  =  -u x ) )
3332exp31 364 . . . . . 6  |-  ( ( y  e.  RR  /\  -u y  e.  A )  ->  ( x  e.  A  ->  ( A  C_  RR  ->  ( x  =  -u y  <->  y  =  -u x ) ) ) )
3421, 33sylbi 121 . . . . 5  |-  ( y  e.  { n  e.  RR  |  -u n  e.  A }  ->  (
x  e.  A  -> 
( A  C_  RR  ->  ( x  =  -u y 
<->  y  =  -u x
) ) ) )
3534impcom 125 . . . 4  |-  ( ( x  e.  A  /\  y  e.  { n  e.  RR  |  -u n  e.  A } )  -> 
( A  C_  RR  ->  ( x  =  -u y 
<->  y  =  -u x
) ) )
3635impcom 125 . . 3  |-  ( ( A  C_  RR  /\  (
x  e.  A  /\  y  e.  { n  e.  RR  |  -u n  e.  A } ) )  ->  ( x  = 
-u y  <->  y  =  -u x ) )
371, 18, 25, 36f1ocnv2d 6173 . 2  |-  ( A 
C_  RR  ->  ( F : A -1-1-onto-> { n  e.  RR  |  -u n  e.  A }  /\  `' F  =  ( y  e.  {
n  e.  RR  |  -u n  e.  A }  |-> 
-u y ) ) )
3837simpld 112 1  |-  ( A 
C_  RR  ->  F : A
-1-1-onto-> { n  e.  RR  |  -u n  e.  A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   {crab 2490    C_ wss 3174    |-> cmpt 4121   `'ccnv 4692   -1-1-onto->wf1o 5289   CCcc 7958   RRcr 7959   -ucneg 8279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-sub 8280  df-neg 8281
This theorem is referenced by:  negfi  11654
  Copyright terms: Public domain W3C validator