Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negf1o | Unicode version |
Description: Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020.) |
Ref | Expression |
---|---|
negf1o.1 |
Ref | Expression |
---|---|
negf1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negf1o.1 | . . 3 | |
2 | ssel 3122 | . . . . . 6 | |
3 | renegcl 8130 | . . . . . 6 | |
4 | 2, 3 | syl6 33 | . . . . 5 |
5 | 4 | imp 123 | . . . 4 |
6 | 2 | imp 123 | . . . . 5 |
7 | recn 7859 | . . . . . . . . 9 | |
8 | negneg 8119 | . . . . . . . . . 10 | |
9 | 8 | eqcomd 2163 | . . . . . . . . 9 |
10 | 7, 9 | syl 14 | . . . . . . . 8 |
11 | 10 | eleq1d 2226 | . . . . . . 7 |
12 | 11 | biimpcd 158 | . . . . . 6 |
13 | 12 | adantl 275 | . . . . 5 |
14 | 6, 13 | mpd 13 | . . . 4 |
15 | negeq 8062 | . . . . . 6 | |
16 | 15 | eleq1d 2226 | . . . . 5 |
17 | 16 | elrab 2868 | . . . 4 |
18 | 5, 14, 17 | sylanbrc 414 | . . 3 |
19 | negeq 8062 | . . . . . . 7 | |
20 | 19 | eleq1d 2226 | . . . . . 6 |
21 | 20 | elrab 2868 | . . . . 5 |
22 | simpr 109 | . . . . . 6 | |
23 | 22 | a1i 9 | . . . . 5 |
24 | 21, 23 | syl5bi 151 | . . . 4 |
25 | 24 | imp 123 | . . 3 |
26 | 2, 7 | syl6com 35 | . . . . . . . . . 10 |
27 | 26 | adantl 275 | . . . . . . . . 9 |
28 | 27 | imp 123 | . . . . . . . 8 |
29 | recn 7859 | . . . . . . . . 9 | |
30 | 29 | ad3antrrr 484 | . . . . . . . 8 |
31 | negcon2 8122 | . . . . . . . 8 | |
32 | 28, 30, 31 | syl2anc 409 | . . . . . . 7 |
33 | 32 | exp31 362 | . . . . . 6 |
34 | 21, 33 | sylbi 120 | . . . . 5 |
35 | 34 | impcom 124 | . . . 4 |
36 | 35 | impcom 124 | . . 3 |
37 | 1, 18, 25, 36 | f1ocnv2d 6021 | . 2 |
38 | 37 | simpld 111 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 crab 2439 wss 3102 cmpt 4025 ccnv 4584 wf1o 5168 cc 7724 cr 7725 cneg 8041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-setind 4495 ax-resscn 7818 ax-1cn 7819 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-addcom 7826 ax-addass 7828 ax-distr 7830 ax-i2m1 7831 ax-0id 7834 ax-rnegex 7835 ax-cnre 7837 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-sub 8042 df-neg 8043 |
This theorem is referenced by: negfi 11120 |
Copyright terms: Public domain | W3C validator |