ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negf1o Unicode version

Theorem negf1o 8401
Description: Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020.)
Hypothesis
Ref Expression
negf1o.1  |-  F  =  ( x  e.  A  |-> 
-u x )
Assertion
Ref Expression
negf1o  |-  ( A 
C_  RR  ->  F : A
-1-1-onto-> { n  e.  RR  |  -u n  e.  A } )
Distinct variable group:    A, n, x
Allowed substitution hints:    F( x, n)

Proof of Theorem negf1o
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 negf1o.1 . . 3  |-  F  =  ( x  e.  A  |-> 
-u x )
2 ssel 3173 . . . . . 6  |-  ( A 
C_  RR  ->  ( x  e.  A  ->  x  e.  RR ) )
3 renegcl 8280 . . . . . 6  |-  ( x  e.  RR  ->  -u x  e.  RR )
42, 3syl6 33 . . . . 5  |-  ( A 
C_  RR  ->  ( x  e.  A  ->  -u x  e.  RR ) )
54imp 124 . . . 4  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  -u x  e.  RR )
62imp 124 . . . . 5  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  x  e.  RR )
7 recn 8005 . . . . . . . . 9  |-  ( x  e.  RR  ->  x  e.  CC )
8 negneg 8269 . . . . . . . . . 10  |-  ( x  e.  CC  ->  -u -u x  =  x )
98eqcomd 2199 . . . . . . . . 9  |-  ( x  e.  CC  ->  x  =  -u -u x )
107, 9syl 14 . . . . . . . 8  |-  ( x  e.  RR  ->  x  =  -u -u x )
1110eleq1d 2262 . . . . . . 7  |-  ( x  e.  RR  ->  (
x  e.  A  <->  -u -u x  e.  A ) )
1211biimpcd 159 . . . . . 6  |-  ( x  e.  A  ->  (
x  e.  RR  ->  -u -u x  e.  A ) )
1312adantl 277 . . . . 5  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  (
x  e.  RR  ->  -u -u x  e.  A ) )
146, 13mpd 13 . . . 4  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  -u -u x  e.  A )
15 negeq 8212 . . . . . 6  |-  ( n  =  -u x  ->  -u n  =  -u -u x )
1615eleq1d 2262 . . . . 5  |-  ( n  =  -u x  ->  ( -u n  e.  A  <->  -u -u x  e.  A ) )
1716elrab 2916 . . . 4  |-  ( -u x  e.  { n  e.  RR  |  -u n  e.  A }  <->  ( -u x  e.  RR  /\  -u -u x  e.  A ) )
185, 14, 17sylanbrc 417 . . 3  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  -u x  e.  { n  e.  RR  |  -u n  e.  A } )
19 negeq 8212 . . . . . . 7  |-  ( n  =  y  ->  -u n  =  -u y )
2019eleq1d 2262 . . . . . 6  |-  ( n  =  y  ->  ( -u n  e.  A  <->  -u y  e.  A ) )
2120elrab 2916 . . . . 5  |-  ( y  e.  { n  e.  RR  |  -u n  e.  A }  <->  ( y  e.  RR  /\  -u y  e.  A ) )
22 simpr 110 . . . . . 6  |-  ( ( y  e.  RR  /\  -u y  e.  A )  ->  -u y  e.  A
)
2322a1i 9 . . . . 5  |-  ( A 
C_  RR  ->  ( ( y  e.  RR  /\  -u y  e.  A )  ->  -u y  e.  A
) )
2421, 23biimtrid 152 . . . 4  |-  ( A 
C_  RR  ->  ( y  e.  { n  e.  RR  |  -u n  e.  A }  ->  -u y  e.  A ) )
2524imp 124 . . 3  |-  ( ( A  C_  RR  /\  y  e.  { n  e.  RR  |  -u n  e.  A } )  ->  -u y  e.  A )
262, 7syl6com 35 . . . . . . . . . 10  |-  ( x  e.  A  ->  ( A  C_  RR  ->  x  e.  CC ) )
2726adantl 277 . . . . . . . . 9  |-  ( ( ( y  e.  RR  /\  -u y  e.  A
)  /\  x  e.  A )  ->  ( A  C_  RR  ->  x  e.  CC ) )
2827imp 124 . . . . . . . 8  |-  ( ( ( ( y  e.  RR  /\  -u y  e.  A )  /\  x  e.  A )  /\  A  C_  RR )  ->  x  e.  CC )
29 recn 8005 . . . . . . . . 9  |-  ( y  e.  RR  ->  y  e.  CC )
3029ad3antrrr 492 . . . . . . . 8  |-  ( ( ( ( y  e.  RR  /\  -u y  e.  A )  /\  x  e.  A )  /\  A  C_  RR )  ->  y  e.  CC )
31 negcon2 8272 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  =  -u y 
<->  y  =  -u x
) )
3228, 30, 31syl2anc 411 . . . . . . 7  |-  ( ( ( ( y  e.  RR  /\  -u y  e.  A )  /\  x  e.  A )  /\  A  C_  RR )  ->  (
x  =  -u y  <->  y  =  -u x ) )
3332exp31 364 . . . . . 6  |-  ( ( y  e.  RR  /\  -u y  e.  A )  ->  ( x  e.  A  ->  ( A  C_  RR  ->  ( x  =  -u y  <->  y  =  -u x ) ) ) )
3421, 33sylbi 121 . . . . 5  |-  ( y  e.  { n  e.  RR  |  -u n  e.  A }  ->  (
x  e.  A  -> 
( A  C_  RR  ->  ( x  =  -u y 
<->  y  =  -u x
) ) ) )
3534impcom 125 . . . 4  |-  ( ( x  e.  A  /\  y  e.  { n  e.  RR  |  -u n  e.  A } )  -> 
( A  C_  RR  ->  ( x  =  -u y 
<->  y  =  -u x
) ) )
3635impcom 125 . . 3  |-  ( ( A  C_  RR  /\  (
x  e.  A  /\  y  e.  { n  e.  RR  |  -u n  e.  A } ) )  ->  ( x  = 
-u y  <->  y  =  -u x ) )
371, 18, 25, 36f1ocnv2d 6122 . 2  |-  ( A 
C_  RR  ->  ( F : A -1-1-onto-> { n  e.  RR  |  -u n  e.  A }  /\  `' F  =  ( y  e.  {
n  e.  RR  |  -u n  e.  A }  |-> 
-u y ) ) )
3837simpld 112 1  |-  ( A 
C_  RR  ->  F : A
-1-1-onto-> { n  e.  RR  |  -u n  e.  A } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {crab 2476    C_ wss 3153    |-> cmpt 4090   `'ccnv 4658   -1-1-onto->wf1o 5253   CCcc 7870   RRcr 7871   -ucneg 8191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-setind 4569  ax-resscn 7964  ax-1cn 7965  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-sub 8192  df-neg 8193
This theorem is referenced by:  negfi  11371
  Copyright terms: Public domain W3C validator