| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negf1o | Unicode version | ||
| Description: Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020.) |
| Ref | Expression |
|---|---|
| negf1o.1 |
|
| Ref | Expression |
|---|---|
| negf1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negf1o.1 |
. . 3
| |
| 2 | ssel 3195 |
. . . . . 6
| |
| 3 | renegcl 8368 |
. . . . . 6
| |
| 4 | 2, 3 | syl6 33 |
. . . . 5
|
| 5 | 4 | imp 124 |
. . . 4
|
| 6 | 2 | imp 124 |
. . . . 5
|
| 7 | recn 8093 |
. . . . . . . . 9
| |
| 8 | negneg 8357 |
. . . . . . . . . 10
| |
| 9 | 8 | eqcomd 2213 |
. . . . . . . . 9
|
| 10 | 7, 9 | syl 14 |
. . . . . . . 8
|
| 11 | 10 | eleq1d 2276 |
. . . . . . 7
|
| 12 | 11 | biimpcd 159 |
. . . . . 6
|
| 13 | 12 | adantl 277 |
. . . . 5
|
| 14 | 6, 13 | mpd 13 |
. . . 4
|
| 15 | negeq 8300 |
. . . . . 6
| |
| 16 | 15 | eleq1d 2276 |
. . . . 5
|
| 17 | 16 | elrab 2936 |
. . . 4
|
| 18 | 5, 14, 17 | sylanbrc 417 |
. . 3
|
| 19 | negeq 8300 |
. . . . . . 7
| |
| 20 | 19 | eleq1d 2276 |
. . . . . 6
|
| 21 | 20 | elrab 2936 |
. . . . 5
|
| 22 | simpr 110 |
. . . . . 6
| |
| 23 | 22 | a1i 9 |
. . . . 5
|
| 24 | 21, 23 | biimtrid 152 |
. . . 4
|
| 25 | 24 | imp 124 |
. . 3
|
| 26 | 2, 7 | syl6com 35 |
. . . . . . . . . 10
|
| 27 | 26 | adantl 277 |
. . . . . . . . 9
|
| 28 | 27 | imp 124 |
. . . . . . . 8
|
| 29 | recn 8093 |
. . . . . . . . 9
| |
| 30 | 29 | ad3antrrr 492 |
. . . . . . . 8
|
| 31 | negcon2 8360 |
. . . . . . . 8
| |
| 32 | 28, 30, 31 | syl2anc 411 |
. . . . . . 7
|
| 33 | 32 | exp31 364 |
. . . . . 6
|
| 34 | 21, 33 | sylbi 121 |
. . . . 5
|
| 35 | 34 | impcom 125 |
. . . 4
|
| 36 | 35 | impcom 125 |
. . 3
|
| 37 | 1, 18, 25, 36 | f1ocnv2d 6173 |
. 2
|
| 38 | 37 | simpld 112 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sub 8280 df-neg 8281 |
| This theorem is referenced by: negfi 11654 |
| Copyright terms: Public domain | W3C validator |