Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1ofveu | GIF version |
Description: There is one domain element for each value of a one-to-one onto function. (Contributed by NM, 26-May-2006.) |
Ref | Expression |
---|---|
f1ofveu | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnv 5445 | . . . 4 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵–1-1-onto→𝐴) | |
2 | f1of 5432 | . . . 4 ⊢ (◡𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐵⟶𝐴) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐵⟶𝐴) |
4 | feu 5370 | . . 3 ⊢ ((◡𝐹:𝐵⟶𝐴 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 〈𝐶, 𝑥〉 ∈ ◡𝐹) | |
5 | 3, 4 | sylan 281 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 〈𝐶, 𝑥〉 ∈ ◡𝐹) |
6 | f1ocnvfvb 5748 | . . . . . 6 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → ((𝐹‘𝑥) = 𝐶 ↔ (◡𝐹‘𝐶) = 𝑥)) | |
7 | 6 | 3com23 1199 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝐶 ↔ (◡𝐹‘𝐶) = 𝑥)) |
8 | dff1o4 5440 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ◡𝐹 Fn 𝐵)) | |
9 | 8 | simprbi 273 | . . . . . 6 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹 Fn 𝐵) |
10 | fnopfvb 5528 | . . . . . . 7 ⊢ ((◡𝐹 Fn 𝐵 ∧ 𝐶 ∈ 𝐵) → ((◡𝐹‘𝐶) = 𝑥 ↔ 〈𝐶, 𝑥〉 ∈ ◡𝐹)) | |
11 | 10 | 3adant3 1007 | . . . . . 6 ⊢ ((◡𝐹 Fn 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((◡𝐹‘𝐶) = 𝑥 ↔ 〈𝐶, 𝑥〉 ∈ ◡𝐹)) |
12 | 9, 11 | syl3an1 1261 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((◡𝐹‘𝐶) = 𝑥 ↔ 〈𝐶, 𝑥〉 ∈ ◡𝐹)) |
13 | 7, 12 | bitrd 187 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝐶 ↔ 〈𝐶, 𝑥〉 ∈ ◡𝐹)) |
14 | 13 | 3expa 1193 | . . 3 ⊢ (((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) = 𝐶 ↔ 〈𝐶, 𝑥〉 ∈ ◡𝐹)) |
15 | 14 | reubidva 2648 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → (∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶 ↔ ∃!𝑥 ∈ 𝐴 〈𝐶, 𝑥〉 ∈ ◡𝐹)) |
16 | 5, 15 | mpbird 166 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 968 = wceq 1343 ∈ wcel 2136 ∃!wreu 2446 〈cop 3579 ◡ccnv 4603 Fn wfn 5183 ⟶wf 5184 –1-1-onto→wf1o 5187 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: 1arith2 12298 |
Copyright terms: Public domain | W3C validator |