| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fiprc | GIF version | ||
| Description: The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.) | 
| Ref | Expression | 
|---|---|
| fiprc | ⊢ Fin ∉ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | snnex 4483 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V | |
| 2 | vex 2766 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 3 | snfig 6873 | . . . . . . . . 9 ⊢ (𝑦 ∈ V → {𝑦} ∈ Fin) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . . . 8 ⊢ {𝑦} ∈ Fin | 
| 5 | eleq1 2259 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → (𝑥 ∈ Fin ↔ {𝑦} ∈ Fin)) | |
| 6 | 4, 5 | mpbiri 168 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → 𝑥 ∈ Fin) | 
| 7 | 6 | exlimiv 1612 | . . . . . 6 ⊢ (∃𝑦 𝑥 = {𝑦} → 𝑥 ∈ Fin) | 
| 8 | 7 | abssi 3258 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin | 
| 9 | ssexg 4172 | . . . . 5 ⊢ (({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin ∧ Fin ∈ V) → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
| 10 | 8, 9 | mpan 424 | . . . 4 ⊢ (Fin ∈ V → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | 
| 11 | 10 | con3i 633 | . . 3 ⊢ (¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V → ¬ Fin ∈ V) | 
| 12 | df-nel 2463 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
| 13 | df-nel 2463 | . . 3 ⊢ (Fin ∉ V ↔ ¬ Fin ∈ V) | |
| 14 | 11, 12, 13 | 3imtr4i 201 | . 2 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V → Fin ∉ V) | 
| 15 | 1, 14 | ax-mp 5 | 1 ⊢ Fin ∉ V | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 = wceq 1364 ∃wex 1506 ∈ wcel 2167 {cab 2182 ∉ wnel 2462 Vcvv 2763 ⊆ wss 3157 {csn 3622 Fincfn 6799 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-nel 2463 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-1o 6474 df-en 6800 df-fin 6802 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |