ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiprc GIF version

Theorem fiprc 6921
Description: The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.)
Assertion
Ref Expression
fiprc Fin ∉ V

Proof of Theorem fiprc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snnex 4503 . 2 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
2 vex 2776 . . . . . . . . 9 𝑦 ∈ V
3 snfig 6920 . . . . . . . . 9 (𝑦 ∈ V → {𝑦} ∈ Fin)
42, 3ax-mp 5 . . . . . . . 8 {𝑦} ∈ Fin
5 eleq1 2269 . . . . . . . 8 (𝑥 = {𝑦} → (𝑥 ∈ Fin ↔ {𝑦} ∈ Fin))
64, 5mpbiri 168 . . . . . . 7 (𝑥 = {𝑦} → 𝑥 ∈ Fin)
76exlimiv 1622 . . . . . 6 (∃𝑦 𝑥 = {𝑦} → 𝑥 ∈ Fin)
87abssi 3272 . . . . 5 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin
9 ssexg 4191 . . . . 5 (({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin ∧ Fin ∈ V) → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
108, 9mpan 424 . . . 4 (Fin ∈ V → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
1110con3i 633 . . 3 (¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V → ¬ Fin ∈ V)
12 df-nel 2473 . . 3 ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
13 df-nel 2473 . . 3 (Fin ∉ V ↔ ¬ Fin ∈ V)
1411, 12, 133imtr4i 201 . 2 ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V → Fin ∉ V)
151, 14ax-mp 5 1 Fin ∉ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1373  wex 1516  wcel 2177  {cab 2192  wnel 2472  Vcvv 2773  wss 3170  {csn 3638  Fincfn 6840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-nel 2473  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-id 4348  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-1o 6515  df-en 6841  df-fin 6843
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator