| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fiprc | GIF version | ||
| Description: The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.) |
| Ref | Expression |
|---|---|
| fiprc | ⊢ Fin ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snnex 4538 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V | |
| 2 | vex 2802 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 3 | snfig 6965 | . . . . . . . . 9 ⊢ (𝑦 ∈ V → {𝑦} ∈ Fin) | |
| 4 | 2, 3 | ax-mp 5 | . . . . . . . 8 ⊢ {𝑦} ∈ Fin |
| 5 | eleq1 2292 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → (𝑥 ∈ Fin ↔ {𝑦} ∈ Fin)) | |
| 6 | 4, 5 | mpbiri 168 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → 𝑥 ∈ Fin) |
| 7 | 6 | exlimiv 1644 | . . . . . 6 ⊢ (∃𝑦 𝑥 = {𝑦} → 𝑥 ∈ Fin) |
| 8 | 7 | abssi 3299 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin |
| 9 | ssexg 4222 | . . . . 5 ⊢ (({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin ∧ Fin ∈ V) → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
| 10 | 8, 9 | mpan 424 | . . . 4 ⊢ (Fin ∈ V → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) |
| 11 | 10 | con3i 635 | . . 3 ⊢ (¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V → ¬ Fin ∈ V) |
| 12 | df-nel 2496 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
| 13 | df-nel 2496 | . . 3 ⊢ (Fin ∉ V ↔ ¬ Fin ∈ V) | |
| 14 | 11, 12, 13 | 3imtr4i 201 | . 2 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V → Fin ∉ V) |
| 15 | 1, 14 | ax-mp 5 | 1 ⊢ Fin ∉ V |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 = wceq 1395 ∃wex 1538 ∈ wcel 2200 {cab 2215 ∉ wnel 2495 Vcvv 2799 ⊆ wss 3197 {csn 3666 Fincfn 6885 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-nel 2496 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-1o 6560 df-en 6886 df-fin 6888 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |