Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fiprc | GIF version |
Description: The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.) |
Ref | Expression |
---|---|
fiprc | ⊢ Fin ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snnex 4433 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V | |
2 | vex 2733 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
3 | snfig 6792 | . . . . . . . . 9 ⊢ (𝑦 ∈ V → {𝑦} ∈ Fin) | |
4 | 2, 3 | ax-mp 5 | . . . . . . . 8 ⊢ {𝑦} ∈ Fin |
5 | eleq1 2233 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → (𝑥 ∈ Fin ↔ {𝑦} ∈ Fin)) | |
6 | 4, 5 | mpbiri 167 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → 𝑥 ∈ Fin) |
7 | 6 | exlimiv 1591 | . . . . . 6 ⊢ (∃𝑦 𝑥 = {𝑦} → 𝑥 ∈ Fin) |
8 | 7 | abssi 3222 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin |
9 | ssexg 4128 | . . . . 5 ⊢ (({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin ∧ Fin ∈ V) → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
10 | 8, 9 | mpan 422 | . . . 4 ⊢ (Fin ∈ V → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) |
11 | 10 | con3i 627 | . . 3 ⊢ (¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V → ¬ Fin ∈ V) |
12 | df-nel 2436 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
13 | df-nel 2436 | . . 3 ⊢ (Fin ∉ V ↔ ¬ Fin ∈ V) | |
14 | 11, 12, 13 | 3imtr4i 200 | . 2 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V → Fin ∉ V) |
15 | 1, 14 | ax-mp 5 | 1 ⊢ Fin ∉ V |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1348 ∃wex 1485 ∈ wcel 2141 {cab 2156 ∉ wnel 2435 Vcvv 2730 ⊆ wss 3121 {csn 3583 Fincfn 6718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-nel 2436 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-1o 6395 df-en 6719 df-fin 6721 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |