ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiprc GIF version

Theorem fiprc 6817
Description: The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.)
Assertion
Ref Expression
fiprc Fin ∉ V

Proof of Theorem fiprc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snnex 4450 . 2 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
2 vex 2742 . . . . . . . . 9 𝑦 ∈ V
3 snfig 6816 . . . . . . . . 9 (𝑦 ∈ V → {𝑦} ∈ Fin)
42, 3ax-mp 5 . . . . . . . 8 {𝑦} ∈ Fin
5 eleq1 2240 . . . . . . . 8 (𝑥 = {𝑦} → (𝑥 ∈ Fin ↔ {𝑦} ∈ Fin))
64, 5mpbiri 168 . . . . . . 7 (𝑥 = {𝑦} → 𝑥 ∈ Fin)
76exlimiv 1598 . . . . . 6 (∃𝑦 𝑥 = {𝑦} → 𝑥 ∈ Fin)
87abssi 3232 . . . . 5 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin
9 ssexg 4144 . . . . 5 (({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin ∧ Fin ∈ V) → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
108, 9mpan 424 . . . 4 (Fin ∈ V → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
1110con3i 632 . . 3 (¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V → ¬ Fin ∈ V)
12 df-nel 2443 . . 3 ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
13 df-nel 2443 . . 3 (Fin ∉ V ↔ ¬ Fin ∈ V)
1411, 12, 133imtr4i 201 . 2 ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V → Fin ∉ V)
151, 14ax-mp 5 1 Fin ∉ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1353  wex 1492  wcel 2148  {cab 2163  wnel 2442  Vcvv 2739  wss 3131  {csn 3594  Fincfn 6742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-nel 2443  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-1o 6419  df-en 6743  df-fin 6745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator