![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fiprc | GIF version |
Description: The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.) |
Ref | Expression |
---|---|
fiprc | ⊢ Fin ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snnex 4450 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V | |
2 | vex 2742 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
3 | snfig 6816 | . . . . . . . . 9 ⊢ (𝑦 ∈ V → {𝑦} ∈ Fin) | |
4 | 2, 3 | ax-mp 5 | . . . . . . . 8 ⊢ {𝑦} ∈ Fin |
5 | eleq1 2240 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → (𝑥 ∈ Fin ↔ {𝑦} ∈ Fin)) | |
6 | 4, 5 | mpbiri 168 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → 𝑥 ∈ Fin) |
7 | 6 | exlimiv 1598 | . . . . . 6 ⊢ (∃𝑦 𝑥 = {𝑦} → 𝑥 ∈ Fin) |
8 | 7 | abssi 3232 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin |
9 | ssexg 4144 | . . . . 5 ⊢ (({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin ∧ Fin ∈ V) → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
10 | 8, 9 | mpan 424 | . . . 4 ⊢ (Fin ∈ V → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) |
11 | 10 | con3i 632 | . . 3 ⊢ (¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V → ¬ Fin ∈ V) |
12 | df-nel 2443 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
13 | df-nel 2443 | . . 3 ⊢ (Fin ∉ V ↔ ¬ Fin ∈ V) | |
14 | 11, 12, 13 | 3imtr4i 201 | . 2 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V → Fin ∉ V) |
15 | 1, 14 | ax-mp 5 | 1 ⊢ Fin ∉ V |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1353 ∃wex 1492 ∈ wcel 2148 {cab 2163 ∉ wnel 2442 Vcvv 2739 ⊆ wss 3131 {csn 3594 Fincfn 6742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-nel 2443 df-ral 2460 df-rex 2461 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-id 4295 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-1o 6419 df-en 6743 df-fin 6745 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |