Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fiprc | GIF version |
Description: The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008.) |
Ref | Expression |
---|---|
fiprc | ⊢ Fin ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snnex 4426 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V | |
2 | vex 2729 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
3 | snfig 6780 | . . . . . . . . 9 ⊢ (𝑦 ∈ V → {𝑦} ∈ Fin) | |
4 | 2, 3 | ax-mp 5 | . . . . . . . 8 ⊢ {𝑦} ∈ Fin |
5 | eleq1 2229 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → (𝑥 ∈ Fin ↔ {𝑦} ∈ Fin)) | |
6 | 4, 5 | mpbiri 167 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → 𝑥 ∈ Fin) |
7 | 6 | exlimiv 1586 | . . . . . 6 ⊢ (∃𝑦 𝑥 = {𝑦} → 𝑥 ∈ Fin) |
8 | 7 | abssi 3217 | . . . . 5 ⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin |
9 | ssexg 4121 | . . . . 5 ⊢ (({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ⊆ Fin ∧ Fin ∈ V) → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
10 | 8, 9 | mpan 421 | . . . 4 ⊢ (Fin ∈ V → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) |
11 | 10 | con3i 622 | . . 3 ⊢ (¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V → ¬ Fin ∈ V) |
12 | df-nel 2432 | . . 3 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V ↔ ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | |
13 | df-nel 2432 | . . 3 ⊢ (Fin ∉ V ↔ ¬ Fin ∈ V) | |
14 | 11, 12, 13 | 3imtr4i 200 | . 2 ⊢ ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V → Fin ∉ V) |
15 | 1, 14 | ax-mp 5 | 1 ⊢ Fin ∉ V |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 = wceq 1343 ∃wex 1480 ∈ wcel 2136 {cab 2151 ∉ wnel 2431 Vcvv 2726 ⊆ wss 3116 {csn 3576 Fincfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-nel 2432 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-1o 6384 df-en 6707 df-fin 6709 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |