ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fipwssg Unicode version

Theorem fipwssg 6935
Description: If a set is a family of subsets of some base set, then so is its finite intersection. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fipwssg  |-  ( ( A  e.  V  /\  A  C_  ~P X )  ->  ( fi `  A )  C_  ~P X )

Proof of Theorem fipwssg
StepHypRef Expression
1 fiuni 6934 . . . 4  |-  ( A  e.  V  ->  U. A  =  U. ( fi `  A ) )
21sseq1d 3166 . . 3  |-  ( A  e.  V  ->  ( U. A  C_  X  <->  U. ( fi `  A )  C_  X ) )
3 sspwuni 3944 . . 3  |-  ( A 
C_  ~P X  <->  U. A  C_  X )
4 sspwuni 3944 . . 3  |-  ( ( fi `  A ) 
C_  ~P X  <->  U. ( fi `  A )  C_  X )
52, 3, 43bitr4g 222 . 2  |-  ( A  e.  V  ->  ( A  C_  ~P X  <->  ( fi `  A )  C_  ~P X ) )
65biimpa 294 1  |-  ( ( A  e.  V  /\  A  C_  ~P X )  ->  ( fi `  A )  C_  ~P X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2135    C_ wss 3111   ~Pcpw 3553   U.cuni 3783   ` cfv 5182   ficfi 6924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-1o 6375  df-er 6492  df-en 6698  df-fin 6700  df-fi 6925
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator