ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fipwssg Unicode version

Theorem fipwssg 7040
Description: If a set is a family of subsets of some base set, then so is its finite intersection. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fipwssg  |-  ( ( A  e.  V  /\  A  C_  ~P X )  ->  ( fi `  A )  C_  ~P X )

Proof of Theorem fipwssg
StepHypRef Expression
1 fiuni 7039 . . . 4  |-  ( A  e.  V  ->  U. A  =  U. ( fi `  A ) )
21sseq1d 3209 . . 3  |-  ( A  e.  V  ->  ( U. A  C_  X  <->  U. ( fi `  A )  C_  X ) )
3 sspwuni 3998 . . 3  |-  ( A 
C_  ~P X  <->  U. A  C_  X )
4 sspwuni 3998 . . 3  |-  ( ( fi `  A ) 
C_  ~P X  <->  U. ( fi `  A )  C_  X )
52, 3, 43bitr4g 223 . 2  |-  ( A  e.  V  ->  ( A  C_  ~P X  <->  ( fi `  A )  C_  ~P X ) )
65biimpa 296 1  |-  ( ( A  e.  V  /\  A  C_  ~P X )  ->  ( fi `  A )  C_  ~P X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164    C_ wss 3154   ~Pcpw 3602   U.cuni 3836   ` cfv 5255   ficfi 7029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1o 6471  df-er 6589  df-en 6797  df-fin 6799  df-fi 7030
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator