![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fipwssg | GIF version |
Description: If a set is a family of subsets of some base set, then so is its finite intersection. (Contributed by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
fipwssg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝒫 𝑋) → (fi‘𝐴) ⊆ 𝒫 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fiuni 6991 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 = ∪ (fi‘𝐴)) | |
2 | 1 | sseq1d 3196 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝐴 ⊆ 𝑋 ↔ ∪ (fi‘𝐴) ⊆ 𝑋)) |
3 | sspwuni 3983 | . . 3 ⊢ (𝐴 ⊆ 𝒫 𝑋 ↔ ∪ 𝐴 ⊆ 𝑋) | |
4 | sspwuni 3983 | . . 3 ⊢ ((fi‘𝐴) ⊆ 𝒫 𝑋 ↔ ∪ (fi‘𝐴) ⊆ 𝑋) | |
5 | 2, 3, 4 | 3bitr4g 223 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊆ 𝒫 𝑋 ↔ (fi‘𝐴) ⊆ 𝒫 𝑋)) |
6 | 5 | biimpa 296 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ⊆ 𝒫 𝑋) → (fi‘𝐴) ⊆ 𝒫 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2158 ⊆ wss 3141 𝒫 cpw 3587 ∪ cuni 3821 ‘cfv 5228 ficfi 6981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-iinf 4599 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-1o 6431 df-er 6549 df-en 6755 df-fin 6757 df-fi 6982 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |