ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flapcl Unicode version

Theorem flapcl 10495
Description: The floor (greatest integer) function yields an integer when applied to a real number apart from any integer. For example, an irrational number (see for example sqrt2irrap 12702) would satisfy this condition. (Contributed by Jim Kingdon, 11-May-2022.)
Assertion
Ref Expression
flapcl  |-  ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  ->  ( |_ `  A )  e.  ZZ )
Distinct variable group:    A, n

Proof of Theorem flapcl
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 flval 10492 . . 3  |-  ( A  e.  RR  ->  ( |_ `  A )  =  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) )
21adantr 276 . 2  |-  ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  ->  ( |_ `  A )  =  ( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) ) )
3 apbtwnz 10494 . . 3  |-  ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  ->  E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) ) )
4 riotacl 5970 . . 3  |-  ( E! x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) )  -> 
( iota_ x  e.  ZZ  ( x  <_  A  /\  A  <  ( x  + 
1 ) ) )  e.  ZZ )
53, 4syl 14 . 2  |-  ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  ->  ( iota_ x  e.  ZZ  (
x  <_  A  /\  A  <  ( x  + 
1 ) ) )  e.  ZZ )
62, 5eqeltrd 2306 1  |-  ( ( A  e.  RR  /\  A. n  e.  ZZ  A #  n )  ->  ( |_ `  A )  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   E!wreu 2510   class class class wbr 4083   ` cfv 5318   iota_crio 5953  (class class class)co 6001   RRcr 7998   1c1 8000    + caddc 8002    < clt 8181    <_ cle 8182   # cap 8728   ZZcz 9446   |_cfl 10488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-arch 8118
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-inn 9111  df-n0 9370  df-z 9447  df-fl 10490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator