ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scaffng Unicode version

Theorem scaffng 13650
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b  |-  B  =  ( Base `  W
)
scaffval.f  |-  F  =  (Scalar `  W )
scaffval.k  |-  K  =  ( Base `  F
)
scaffval.a  |-  .xb  =  ( .sf `  W
)
Assertion
Ref Expression
scaffng  |-  ( W  e.  V  ->  .xb  Fn  ( K  X.  B
) )

Proof of Theorem scaffng
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2755 . . . . . 6  |-  x  e. 
_V
2 vscaslid 12685 . . . . . . 7  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
32slotex 12550 . . . . . 6  |-  ( W  e.  V  ->  ( .s `  W )  e. 
_V )
4 vex 2755 . . . . . . 7  |-  y  e. 
_V
54a1i 9 . . . . . 6  |-  ( W  e.  V  ->  y  e.  _V )
6 ovexg 5934 . . . . . 6  |-  ( ( x  e.  _V  /\  ( .s `  W )  e.  _V  /\  y  e.  _V )  ->  (
x ( .s `  W ) y )  e.  _V )
71, 3, 5, 6mp3an2i 1353 . . . . 5  |-  ( W  e.  V  ->  (
x ( .s `  W ) y )  e.  _V )
87ralrimivw 2564 . . . 4  |-  ( W  e.  V  ->  A. y  e.  B  ( x
( .s `  W
) y )  e. 
_V )
98ralrimivw 2564 . . 3  |-  ( W  e.  V  ->  A. x  e.  K  A. y  e.  B  ( x
( .s `  W
) y )  e. 
_V )
10 eqid 2189 . . . 4  |-  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W
) y ) )  =  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W ) y ) )
1110fnmpo 6231 . . 3  |-  ( A. x  e.  K  A. y  e.  B  (
x ( .s `  W ) y )  e.  _V  ->  (
x  e.  K , 
y  e.  B  |->  ( x ( .s `  W ) y ) )  Fn  ( K  X.  B ) )
129, 11syl 14 . 2  |-  ( W  e.  V  ->  (
x  e.  K , 
y  e.  B  |->  ( x ( .s `  W ) y ) )  Fn  ( K  X.  B ) )
13 scaffval.b . . . 4  |-  B  =  ( Base `  W
)
14 scaffval.f . . . 4  |-  F  =  (Scalar `  W )
15 scaffval.k . . . 4  |-  K  =  ( Base `  F
)
16 scaffval.a . . . 4  |-  .xb  =  ( .sf `  W
)
17 eqid 2189 . . . 4  |-  ( .s
`  W )  =  ( .s `  W
)
1813, 14, 15, 16, 17scaffvalg 13647 . . 3  |-  ( W  e.  V  ->  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x ( .s
`  W ) y ) ) )
1918fneq1d 5328 . 2  |-  ( W  e.  V  ->  (  .xb  Fn  ( K  X.  B )  <->  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W ) y ) )  Fn  ( K  X.  B
) ) )
2012, 19mpbird 167 1  |-  ( W  e.  V  ->  .xb  Fn  ( K  X.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160   A.wral 2468   _Vcvv 2752    X. cxp 4645    Fn wfn 5233   ` cfv 5238  (class class class)co 5900    e. cmpo 5902   Basecbs 12523  Scalarcsca 12603   .scvsca 12604   .sfcscaf 13629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-cnex 7937  ax-resscn 7938  ax-1re 7940  ax-addrcl 7943
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-inn 8955  df-2 9013  df-3 9014  df-4 9015  df-5 9016  df-6 9017  df-ndx 12526  df-slot 12527  df-base 12529  df-sca 12616  df-vsca 12617  df-scaf 13631
This theorem is referenced by:  lmodfopnelem1  13665
  Copyright terms: Public domain W3C validator