ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scaffng Unicode version

Theorem scaffng 13865
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b  |-  B  =  ( Base `  W
)
scaffval.f  |-  F  =  (Scalar `  W )
scaffval.k  |-  K  =  ( Base `  F
)
scaffval.a  |-  .xb  =  ( .sf `  W
)
Assertion
Ref Expression
scaffng  |-  ( W  e.  V  ->  .xb  Fn  ( K  X.  B
) )

Proof of Theorem scaffng
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . . . 6  |-  x  e. 
_V
2 vscaslid 12840 . . . . . . 7  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
32slotex 12705 . . . . . 6  |-  ( W  e.  V  ->  ( .s `  W )  e. 
_V )
4 vex 2766 . . . . . . 7  |-  y  e. 
_V
54a1i 9 . . . . . 6  |-  ( W  e.  V  ->  y  e.  _V )
6 ovexg 5956 . . . . . 6  |-  ( ( x  e.  _V  /\  ( .s `  W )  e.  _V  /\  y  e.  _V )  ->  (
x ( .s `  W ) y )  e.  _V )
71, 3, 5, 6mp3an2i 1353 . . . . 5  |-  ( W  e.  V  ->  (
x ( .s `  W ) y )  e.  _V )
87ralrimivw 2571 . . . 4  |-  ( W  e.  V  ->  A. y  e.  B  ( x
( .s `  W
) y )  e. 
_V )
98ralrimivw 2571 . . 3  |-  ( W  e.  V  ->  A. x  e.  K  A. y  e.  B  ( x
( .s `  W
) y )  e. 
_V )
10 eqid 2196 . . . 4  |-  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W
) y ) )  =  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W ) y ) )
1110fnmpo 6260 . . 3  |-  ( A. x  e.  K  A. y  e.  B  (
x ( .s `  W ) y )  e.  _V  ->  (
x  e.  K , 
y  e.  B  |->  ( x ( .s `  W ) y ) )  Fn  ( K  X.  B ) )
129, 11syl 14 . 2  |-  ( W  e.  V  ->  (
x  e.  K , 
y  e.  B  |->  ( x ( .s `  W ) y ) )  Fn  ( K  X.  B ) )
13 scaffval.b . . . 4  |-  B  =  ( Base `  W
)
14 scaffval.f . . . 4  |-  F  =  (Scalar `  W )
15 scaffval.k . . . 4  |-  K  =  ( Base `  F
)
16 scaffval.a . . . 4  |-  .xb  =  ( .sf `  W
)
17 eqid 2196 . . . 4  |-  ( .s
`  W )  =  ( .s `  W
)
1813, 14, 15, 16, 17scaffvalg 13862 . . 3  |-  ( W  e.  V  ->  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x ( .s
`  W ) y ) ) )
1918fneq1d 5348 . 2  |-  ( W  e.  V  ->  (  .xb  Fn  ( K  X.  B )  <->  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W ) y ) )  Fn  ( K  X.  B
) ) )
2012, 19mpbird 167 1  |-  ( W  e.  V  ->  .xb  Fn  ( K  X.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763    X. cxp 4661    Fn wfn 5253   ` cfv 5258  (class class class)co 5922    e. cmpo 5924   Basecbs 12678  Scalarcsca 12758   .scvsca 12759   .sfcscaf 13844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-ndx 12681  df-slot 12682  df-base 12684  df-sca 12771  df-vsca 12772  df-scaf 13846
This theorem is referenced by:  lmodfopnelem1  13880
  Copyright terms: Public domain W3C validator