ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scaffng Unicode version

Theorem scaffng 14238
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b  |-  B  =  ( Base `  W
)
scaffval.f  |-  F  =  (Scalar `  W )
scaffval.k  |-  K  =  ( Base `  F
)
scaffval.a  |-  .xb  =  ( .sf `  W
)
Assertion
Ref Expression
scaffng  |-  ( W  e.  V  ->  .xb  Fn  ( K  X.  B
) )

Proof of Theorem scaffng
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2782 . . . . . 6  |-  x  e. 
_V
2 vscaslid 13162 . . . . . . 7  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
32slotex 13025 . . . . . 6  |-  ( W  e.  V  ->  ( .s `  W )  e. 
_V )
4 vex 2782 . . . . . . 7  |-  y  e. 
_V
54a1i 9 . . . . . 6  |-  ( W  e.  V  ->  y  e.  _V )
6 ovexg 6008 . . . . . 6  |-  ( ( x  e.  _V  /\  ( .s `  W )  e.  _V  /\  y  e.  _V )  ->  (
x ( .s `  W ) y )  e.  _V )
71, 3, 5, 6mp3an2i 1357 . . . . 5  |-  ( W  e.  V  ->  (
x ( .s `  W ) y )  e.  _V )
87ralrimivw 2584 . . . 4  |-  ( W  e.  V  ->  A. y  e.  B  ( x
( .s `  W
) y )  e. 
_V )
98ralrimivw 2584 . . 3  |-  ( W  e.  V  ->  A. x  e.  K  A. y  e.  B  ( x
( .s `  W
) y )  e. 
_V )
10 eqid 2209 . . . 4  |-  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W
) y ) )  =  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W ) y ) )
1110fnmpo 6318 . . 3  |-  ( A. x  e.  K  A. y  e.  B  (
x ( .s `  W ) y )  e.  _V  ->  (
x  e.  K , 
y  e.  B  |->  ( x ( .s `  W ) y ) )  Fn  ( K  X.  B ) )
129, 11syl 14 . 2  |-  ( W  e.  V  ->  (
x  e.  K , 
y  e.  B  |->  ( x ( .s `  W ) y ) )  Fn  ( K  X.  B ) )
13 scaffval.b . . . 4  |-  B  =  ( Base `  W
)
14 scaffval.f . . . 4  |-  F  =  (Scalar `  W )
15 scaffval.k . . . 4  |-  K  =  ( Base `  F
)
16 scaffval.a . . . 4  |-  .xb  =  ( .sf `  W
)
17 eqid 2209 . . . 4  |-  ( .s
`  W )  =  ( .s `  W
)
1813, 14, 15, 16, 17scaffvalg 14235 . . 3  |-  ( W  e.  V  ->  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x ( .s
`  W ) y ) ) )
1918fneq1d 5387 . 2  |-  ( W  e.  V  ->  (  .xb  Fn  ( K  X.  B )  <->  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W ) y ) )  Fn  ( K  X.  B
) ) )
2012, 19mpbird 167 1  |-  ( W  e.  V  ->  .xb  Fn  ( K  X.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1375    e. wcel 2180   A.wral 2488   _Vcvv 2779    X. cxp 4694    Fn wfn 5289   ` cfv 5294  (class class class)co 5974    e. cmpo 5976   Basecbs 12998  Scalarcsca 13079   .scvsca 13080   .sfcscaf 14217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-ndx 13001  df-slot 13002  df-base 13004  df-sca 13092  df-vsca 13093  df-scaf 14219
This theorem is referenced by:  lmodfopnelem1  14253
  Copyright terms: Public domain W3C validator