ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  scaffng Unicode version

Theorem scaffng 13404
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b  |-  B  =  ( Base `  W
)
scaffval.f  |-  F  =  (Scalar `  W )
scaffval.k  |-  K  =  ( Base `  F
)
scaffval.a  |-  .xb  =  ( .sf `  W
)
Assertion
Ref Expression
scaffng  |-  ( W  e.  V  ->  .xb  Fn  ( K  X.  B
) )

Proof of Theorem scaffng
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2742 . . . . . 6  |-  x  e. 
_V
2 vscaslid 12623 . . . . . . 7  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
32slotex 12491 . . . . . 6  |-  ( W  e.  V  ->  ( .s `  W )  e. 
_V )
4 vex 2742 . . . . . . 7  |-  y  e. 
_V
54a1i 9 . . . . . 6  |-  ( W  e.  V  ->  y  e.  _V )
6 ovexg 5911 . . . . . 6  |-  ( ( x  e.  _V  /\  ( .s `  W )  e.  _V  /\  y  e.  _V )  ->  (
x ( .s `  W ) y )  e.  _V )
71, 3, 5, 6mp3an2i 1342 . . . . 5  |-  ( W  e.  V  ->  (
x ( .s `  W ) y )  e.  _V )
87ralrimivw 2551 . . . 4  |-  ( W  e.  V  ->  A. y  e.  B  ( x
( .s `  W
) y )  e. 
_V )
98ralrimivw 2551 . . 3  |-  ( W  e.  V  ->  A. x  e.  K  A. y  e.  B  ( x
( .s `  W
) y )  e. 
_V )
10 eqid 2177 . . . 4  |-  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W
) y ) )  =  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W ) y ) )
1110fnmpo 6205 . . 3  |-  ( A. x  e.  K  A. y  e.  B  (
x ( .s `  W ) y )  e.  _V  ->  (
x  e.  K , 
y  e.  B  |->  ( x ( .s `  W ) y ) )  Fn  ( K  X.  B ) )
129, 11syl 14 . 2  |-  ( W  e.  V  ->  (
x  e.  K , 
y  e.  B  |->  ( x ( .s `  W ) y ) )  Fn  ( K  X.  B ) )
13 scaffval.b . . . 4  |-  B  =  ( Base `  W
)
14 scaffval.f . . . 4  |-  F  =  (Scalar `  W )
15 scaffval.k . . . 4  |-  K  =  ( Base `  F
)
16 scaffval.a . . . 4  |-  .xb  =  ( .sf `  W
)
17 eqid 2177 . . . 4  |-  ( .s
`  W )  =  ( .s `  W
)
1813, 14, 15, 16, 17scaffvalg 13401 . . 3  |-  ( W  e.  V  ->  .xb  =  ( x  e.  K ,  y  e.  B  |->  ( x ( .s
`  W ) y ) ) )
1918fneq1d 5308 . 2  |-  ( W  e.  V  ->  (  .xb  Fn  ( K  X.  B )  <->  ( x  e.  K ,  y  e.  B  |->  ( x ( .s `  W ) y ) )  Fn  ( K  X.  B
) ) )
2012, 19mpbird 167 1  |-  ( W  e.  V  ->  .xb  Fn  ( K  X.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2739    X. cxp 4626    Fn wfn 5213   ` cfv 5218  (class class class)co 5877    e. cmpo 5879   Basecbs 12464  Scalarcsca 12541   .scvsca 12542   .sfcscaf 13383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-ndx 12467  df-slot 12468  df-base 12470  df-sca 12554  df-vsca 12555  df-scaf 13385
This theorem is referenced by:  lmodfopnelem1  13419
  Copyright terms: Public domain W3C validator