ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusffng Unicode version

Theorem plusffng 13312
Description: The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
plusffn.1  |-  B  =  ( Base `  G
)
plusffn.2  |-  .+^  =  ( +f `  G
)
Assertion
Ref Expression
plusffng  |-  ( G  e.  V  ->  .+^  Fn  ( B  X.  B ) )

Proof of Theorem plusffng
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2779 . . . . 5  |-  x  e. 
_V
2 plusgslid 13059 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
32slotex 12974 . . . . 5  |-  ( G  e.  V  ->  ( +g  `  G )  e. 
_V )
4 vex 2779 . . . . . 6  |-  y  e. 
_V
54a1i 9 . . . . 5  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  y  e.  B
) )  ->  y  e.  _V )
6 ovexg 6001 . . . . 5  |-  ( ( x  e.  _V  /\  ( +g  `  G )  e.  _V  /\  y  e.  _V )  ->  (
x ( +g  `  G
) y )  e. 
_V )
71, 3, 5, 6mp3an2ani 1357 . . . 4  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) y )  e. 
_V )
87ralrimivva 2590 . . 3  |-  ( G  e.  V  ->  A. x  e.  B  A. y  e.  B  ( x
( +g  `  G ) y )  e.  _V )
9 eqid 2207 . . . 4  |-  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  G
) y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  G ) y ) )
109fnmpo 6311 . . 3  |-  ( A. x  e.  B  A. y  e.  B  (
x ( +g  `  G
) y )  e. 
_V  ->  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  G ) y ) )  Fn  ( B  X.  B
) )
118, 10syl 14 . 2  |-  ( G  e.  V  ->  (
x  e.  B , 
y  e.  B  |->  ( x ( +g  `  G
) y ) )  Fn  ( B  X.  B ) )
12 plusffn.1 . . . 4  |-  B  =  ( Base `  G
)
13 eqid 2207 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
14 plusffn.2 . . . 4  |-  .+^  =  ( +f `  G
)
1512, 13, 14plusffvalg 13309 . . 3  |-  ( G  e.  V  ->  .+^  =  ( x  e.  B , 
y  e.  B  |->  ( x ( +g  `  G
) y ) ) )
1615fneq1d 5383 . 2  |-  ( G  e.  V  ->  (  .+^ 
Fn  ( B  X.  B )  <->  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  G ) y ) )  Fn  ( B  X.  B
) ) )
1711, 16mpbird 167 1  |-  ( G  e.  V  ->  .+^  Fn  ( B  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   _Vcvv 2776    X. cxp 4691    Fn wfn 5285   ` cfv 5290  (class class class)co 5967    e. cmpo 5969   Basecbs 12947   +g cplusg 13024   +fcplusf 13300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-plusf 13302
This theorem is referenced by:  lmodfopnelem1  14201
  Copyright terms: Public domain W3C validator