ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plusffng Unicode version

Theorem plusffng 13115
Description: The group addition operation is a function. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
plusffn.1  |-  B  =  ( Base `  G
)
plusffn.2  |-  .+^  =  ( +f `  G
)
Assertion
Ref Expression
plusffng  |-  ( G  e.  V  ->  .+^  Fn  ( B  X.  B ) )

Proof of Theorem plusffng
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2774 . . . . 5  |-  x  e. 
_V
2 plusgslid 12863 . . . . . 6  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
32slotex 12778 . . . . 5  |-  ( G  e.  V  ->  ( +g  `  G )  e. 
_V )
4 vex 2774 . . . . . 6  |-  y  e. 
_V
54a1i 9 . . . . 5  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  y  e.  B
) )  ->  y  e.  _V )
6 ovexg 5968 . . . . 5  |-  ( ( x  e.  _V  /\  ( +g  `  G )  e.  _V  /\  y  e.  _V )  ->  (
x ( +g  `  G
) y )  e. 
_V )
71, 3, 5, 6mp3an2ani 1356 . . . 4  |-  ( ( G  e.  V  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x ( +g  `  G
) y )  e. 
_V )
87ralrimivva 2587 . . 3  |-  ( G  e.  V  ->  A. x  e.  B  A. y  e.  B  ( x
( +g  `  G ) y )  e.  _V )
9 eqid 2204 . . . 4  |-  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  G
) y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  G ) y ) )
109fnmpo 6278 . . 3  |-  ( A. x  e.  B  A. y  e.  B  (
x ( +g  `  G
) y )  e. 
_V  ->  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  G ) y ) )  Fn  ( B  X.  B
) )
118, 10syl 14 . 2  |-  ( G  e.  V  ->  (
x  e.  B , 
y  e.  B  |->  ( x ( +g  `  G
) y ) )  Fn  ( B  X.  B ) )
12 plusffn.1 . . . 4  |-  B  =  ( Base `  G
)
13 eqid 2204 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
14 plusffn.2 . . . 4  |-  .+^  =  ( +f `  G
)
1512, 13, 14plusffvalg 13112 . . 3  |-  ( G  e.  V  ->  .+^  =  ( x  e.  B , 
y  e.  B  |->  ( x ( +g  `  G
) y ) ) )
1615fneq1d 5358 . 2  |-  ( G  e.  V  ->  (  .+^ 
Fn  ( B  X.  B )  <->  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  G ) y ) )  Fn  ( B  X.  B
) ) )
1711, 16mpbird 167 1  |-  ( G  e.  V  ->  .+^  Fn  ( B  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   A.wral 2483   _Vcvv 2771    X. cxp 4671    Fn wfn 5263   ` cfv 5268  (class class class)co 5934    e. cmpo 5936   Basecbs 12751   +g cplusg 12828   +fcplusf 13103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-cnex 7998  ax-resscn 7999  ax-1re 8001  ax-addrcl 8004
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-inn 9019  df-2 9077  df-ndx 12754  df-slot 12755  df-base 12757  df-plusg 12841  df-plusf 13105
This theorem is referenced by:  lmodfopnelem1  14004
  Copyright terms: Public domain W3C validator