ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fornex Unicode version

Theorem fornex 6083
Description: If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
fornex  |-  ( A  e.  C  ->  ( F : A -onto-> B  ->  B  e.  _V )
)

Proof of Theorem fornex
StepHypRef Expression
1 fofun 5411 . . . 4  |-  ( F : A -onto-> B  ->  Fun  F )
2 funrnex 6082 . . . 4  |-  ( dom 
F  e.  C  -> 
( Fun  F  ->  ran 
F  e.  _V )
)
31, 2syl5com 29 . . 3  |-  ( F : A -onto-> B  -> 
( dom  F  e.  C  ->  ran  F  e.  _V ) )
4 fof 5410 . . . . 5  |-  ( F : A -onto-> B  ->  F : A --> B )
5 fdm 5343 . . . . 5  |-  ( F : A --> B  ->  dom  F  =  A )
64, 5syl 14 . . . 4  |-  ( F : A -onto-> B  ->  dom  F  =  A )
76eleq1d 2235 . . 3  |-  ( F : A -onto-> B  -> 
( dom  F  e.  C 
<->  A  e.  C ) )
8 forn 5413 . . . 4  |-  ( F : A -onto-> B  ->  ran  F  =  B )
98eleq1d 2235 . . 3  |-  ( F : A -onto-> B  -> 
( ran  F  e.  _V 
<->  B  e.  _V )
)
103, 7, 93imtr3d 201 . 2  |-  ( F : A -onto-> B  -> 
( A  e.  C  ->  B  e.  _V )
)
1110com12 30 1  |-  ( A  e.  C  ->  ( F : A -onto-> B  ->  B  e.  _V )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   _Vcvv 2726   dom cdm 4604   ran crn 4605   Fun wfun 5182   -->wf 5184   -onto->wfo 5186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196
This theorem is referenced by:  f1dmex  6084  f1oeng  6723  ctfoex  7083  omctfn  12376
  Copyright terms: Public domain W3C validator