Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fornex | GIF version |
Description: If the domain of an onto function exists, so does its codomain. (Contributed by NM, 23-Jul-2004.) |
Ref | Expression |
---|---|
fornex | ⊢ (𝐴 ∈ 𝐶 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fofun 5411 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → Fun 𝐹) | |
2 | funrnex 6082 | . . . 4 ⊢ (dom 𝐹 ∈ 𝐶 → (Fun 𝐹 → ran 𝐹 ∈ V)) | |
3 | 1, 2 | syl5com 29 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (dom 𝐹 ∈ 𝐶 → ran 𝐹 ∈ V)) |
4 | fof 5410 | . . . . 5 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
5 | fdm 5343 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → dom 𝐹 = 𝐴) |
7 | 6 | eleq1d 2235 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (dom 𝐹 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) |
8 | forn 5413 | . . . 4 ⊢ (𝐹:𝐴–onto→𝐵 → ran 𝐹 = 𝐵) | |
9 | 8 | eleq1d 2235 | . . 3 ⊢ (𝐹:𝐴–onto→𝐵 → (ran 𝐹 ∈ V ↔ 𝐵 ∈ V)) |
10 | 3, 7, 9 | 3imtr3d 201 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐴 ∈ 𝐶 → 𝐵 ∈ V)) |
11 | 10 | com12 30 | 1 ⊢ (𝐴 ∈ 𝐶 → (𝐹:𝐴–onto→𝐵 → 𝐵 ∈ V)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 Vcvv 2726 dom cdm 4604 ran crn 4605 Fun wfun 5182 ⟶wf 5184 –onto→wfo 5186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: f1dmex 6084 f1oeng 6723 ctfoex 7083 omctfn 12376 |
Copyright terms: Public domain | W3C validator |