| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > omctfn | Unicode version | ||
| Description: Using countable choice to find a sequence of enumerations for a collection of countable sets. Lemma 8.1.27 of [AczelRathjen], p. 77. (Contributed by Jim Kingdon, 19-Apr-2024.) |
| Ref | Expression |
|---|---|
| omiunct.cc |
|
| omiunct.g |
|
| Ref | Expression |
|---|---|
| omctfn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omiunct.cc |
. 2
| |
| 2 | fnmap 6742 |
. . . . 5
| |
| 3 | omiunct.g |
. . . . . 6
| |
| 4 | omex 4641 |
. . . . . . . 8
| |
| 5 | focdmex 6200 |
. . . . . . . 8
| |
| 6 | 4, 5 | ax-mp 5 |
. . . . . . 7
|
| 7 | 6 | adantl 277 |
. . . . . 6
|
| 8 | 3, 7 | exlimddv 1922 |
. . . . 5
|
| 9 | 4 | a1i 9 |
. . . . 5
|
| 10 | fnovex 5977 |
. . . . 5
| |
| 11 | 2, 8, 9, 10 | mp3an2i 1355 |
. . . 4
|
| 12 | rabexg 4187 |
. . . 4
| |
| 13 | 11, 12 | syl 14 |
. . 3
|
| 14 | 13 | ralrimiva 2579 |
. 2
|
| 15 | 4 | enref 6856 |
. . 3
|
| 16 | 15 | a1i 9 |
. 2
|
| 17 | foeq1 5494 |
. 2
| |
| 18 | fof 5498 |
. . . . . . . . . 10
| |
| 19 | 18 | adantl 277 |
. . . . . . . . 9
|
| 20 | elmapg 6748 |
. . . . . . . . . 10
| |
| 21 | 7, 4, 20 | sylancl 413 |
. . . . . . . . 9
|
| 22 | 19, 21 | mpbird 167 |
. . . . . . . 8
|
| 23 | simpr 110 |
. . . . . . . 8
| |
| 24 | 22, 23 | jca 306 |
. . . . . . 7
|
| 25 | 24 | ex 115 |
. . . . . 6
|
| 26 | 25 | eximdv 1903 |
. . . . 5
|
| 27 | df-rex 2490 |
. . . . 5
| |
| 28 | 26, 27 | imbitrrdi 162 |
. . . 4
|
| 29 | 3, 28 | mpd 13 |
. . 3
|
| 30 | 29 | ralrimiva 2579 |
. 2
|
| 31 | 1, 14, 16, 17, 30 | cc4n 7383 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-er 6620 df-map 6737 df-en 6828 df-cc 7375 |
| This theorem is referenced by: omiunct 12815 |
| Copyright terms: Public domain | W3C validator |