Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > omctfn | Unicode version |
Description: Using countable choice to find a sequence of enumerations for a collection of countable sets. Lemma 8.1.27 of [AczelRathjen], p. 77. (Contributed by Jim Kingdon, 19-Apr-2024.) |
Ref | Expression |
---|---|
omiunct.cc | CCHOICE |
omiunct.g | ⊔ |
Ref | Expression |
---|---|
omctfn | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omiunct.cc | . 2 CCHOICE | |
2 | fnmap 6633 | . . . . 5 | |
3 | omiunct.g | . . . . . 6 ⊔ | |
4 | omex 4577 | . . . . . . . 8 | |
5 | fornex 6094 | . . . . . . . 8 ⊔ ⊔ | |
6 | 4, 5 | ax-mp 5 | . . . . . . 7 ⊔ ⊔ |
7 | 6 | adantl 275 | . . . . . 6 ⊔ ⊔ |
8 | 3, 7 | exlimddv 1891 | . . . . 5 ⊔ |
9 | 4 | a1i 9 | . . . . 5 |
10 | fnovex 5886 | . . . . 5 ⊔ ⊔ | |
11 | 2, 8, 9, 10 | mp3an2i 1337 | . . . 4 ⊔ |
12 | rabexg 4132 | . . . 4 ⊔ ⊔ ⊔ | |
13 | 11, 12 | syl 14 | . . 3 ⊔ ⊔ |
14 | 13 | ralrimiva 2543 | . 2 ⊔ ⊔ |
15 | 4 | enref 6743 | . . 3 |
16 | 15 | a1i 9 | . 2 |
17 | foeq1 5416 | . 2 ⊔ ⊔ | |
18 | fof 5420 | . . . . . . . . . 10 ⊔ ⊔ | |
19 | 18 | adantl 275 | . . . . . . . . 9 ⊔ ⊔ |
20 | elmapg 6639 | . . . . . . . . . 10 ⊔ ⊔ ⊔ | |
21 | 7, 4, 20 | sylancl 411 | . . . . . . . . 9 ⊔ ⊔ ⊔ |
22 | 19, 21 | mpbird 166 | . . . . . . . 8 ⊔ ⊔ |
23 | simpr 109 | . . . . . . . 8 ⊔ ⊔ | |
24 | 22, 23 | jca 304 | . . . . . . 7 ⊔ ⊔ ⊔ |
25 | 24 | ex 114 | . . . . . 6 ⊔ ⊔ ⊔ |
26 | 25 | eximdv 1873 | . . . . 5 ⊔ ⊔ ⊔ |
27 | df-rex 2454 | . . . . 5 ⊔ ⊔ ⊔ ⊔ | |
28 | 26, 27 | syl6ibr 161 | . . . 4 ⊔ ⊔ ⊔ |
29 | 3, 28 | mpd 13 | . . 3 ⊔ ⊔ |
30 | 29 | ralrimiva 2543 | . 2 ⊔ ⊔ |
31 | 1, 14, 16, 17, 30 | cc4n 7233 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wex 1485 wcel 2141 wral 2448 wrex 2449 crab 2452 cvv 2730 class class class wbr 3989 com 4574 cxp 4609 wfn 5193 wf 5194 wfo 5196 cfv 5198 (class class class)co 5853 c1o 6388 cmap 6626 cen 6716 ⊔ cdju 7014 CCHOICEwacc 7224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-er 6513 df-map 6628 df-en 6719 df-cc 7225 |
This theorem is referenced by: omiunct 12399 |
Copyright terms: Public domain | W3C validator |