ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omctfn Unicode version

Theorem omctfn 12685
Description: Using countable choice to find a sequence of enumerations for a collection of countable sets. Lemma 8.1.27 of [AczelRathjen], p. 77. (Contributed by Jim Kingdon, 19-Apr-2024.)
Hypotheses
Ref Expression
omiunct.cc  |-  ( ph  -> CCHOICE )
omiunct.g  |-  ( (
ph  /\  x  e.  om )  ->  E. g 
g : om -onto-> ( B 1o ) )
Assertion
Ref Expression
omctfn  |-  ( ph  ->  E. f ( f  Fn  om  /\  A. x  e.  om  (
f `  x ) : om -onto-> ( B 1o ) ) )
Distinct variable groups:    B, f, g    ph, f, x, g
Allowed substitution hint:    B( x)

Proof of Theorem omctfn
StepHypRef Expression
1 omiunct.cc . 2  |-  ( ph  -> CCHOICE )
2 fnmap 6723 . . . . 5  |-  ^m  Fn  ( _V  X.  _V )
3 omiunct.g . . . . . 6  |-  ( (
ph  /\  x  e.  om )  ->  E. g 
g : om -onto-> ( B 1o ) )
4 omex 4630 . . . . . . . 8  |-  om  e.  _V
5 focdmex 6181 . . . . . . . 8  |-  ( om  e.  _V  ->  (
g : om -onto-> ( B 1o )  ->  ( B 1o )  e.  _V ) )
64, 5ax-mp 5 . . . . . . 7  |-  ( g : om -onto-> ( B 1o )  ->  ( B 1o )  e.  _V )
76adantl 277 . . . . . 6  |-  ( ( ( ph  /\  x  e.  om )  /\  g : om -onto-> ( B 1o ) )  ->  ( B 1o )  e.  _V )
83, 7exlimddv 1913 . . . . 5  |-  ( (
ph  /\  x  e.  om )  ->  ( B 1o )  e.  _V )
94a1i 9 . . . . 5  |-  ( (
ph  /\  x  e.  om )  ->  om  e.  _V )
10 fnovex 5958 . . . . 5  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  ( B 1o )  e.  _V  /\ 
om  e.  _V )  ->  ( ( B 1o )  ^m  om )  e. 
_V )
112, 8, 9, 10mp3an2i 1353 . . . 4  |-  ( (
ph  /\  x  e.  om )  ->  ( ( B 1o )  ^m  om )  e.  _V )
12 rabexg 4177 . . . 4  |-  ( ( ( B 1o )  ^m  om )  e.  _V  ->  { g  e.  ( ( B 1o )  ^m  om )  |  g : om -onto-> ( B 1o ) }  e.  _V )
1311, 12syl 14 . . 3  |-  ( (
ph  /\  x  e.  om )  ->  { g  e.  ( ( B 1o )  ^m  om )  |  g : om -onto-> ( B 1o ) }  e.  _V )
1413ralrimiva 2570 . 2  |-  ( ph  ->  A. x  e.  om  { g  e.  ( ( B 1o )  ^m  om )  |  g : om -onto-> ( B 1o ) }  e.  _V )
154enref 6833 . . 3  |-  om  ~~  om
1615a1i 9 . 2  |-  ( ph  ->  om  ~~  om )
17 foeq1 5479 . 2  |-  ( g  =  ( f `  x )  ->  (
g : om -onto-> ( B 1o )  <->  ( f `  x ) : om -onto->
( B 1o )
) )
18 fof 5483 . . . . . . . . . 10  |-  ( g : om -onto-> ( B 1o )  ->  g : om --> ( B 1o ) )
1918adantl 277 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  om )  /\  g : om -onto-> ( B 1o ) )  ->  g : om
--> ( B 1o )
)
20 elmapg 6729 . . . . . . . . . 10  |-  ( ( ( B 1o )  e.  _V  /\  om  e.  _V )  ->  ( g  e.  ( ( B 1o )  ^m  om )  <->  g : om --> ( B 1o ) ) )
217, 4, 20sylancl 413 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  om )  /\  g : om -onto-> ( B 1o ) )  ->  ( g  e.  ( ( B 1o )  ^m  om )  <->  g : om
--> ( B 1o )
) )
2219, 21mpbird 167 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  om )  /\  g : om -onto-> ( B 1o ) )  ->  g  e.  ( ( B 1o )  ^m  om ) )
23 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  om )  /\  g : om -onto-> ( B 1o ) )  ->  g : om -onto-> ( B 1o ) )
2422, 23jca 306 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  om )  /\  g : om -onto-> ( B 1o ) )  ->  ( g  e.  ( ( B 1o )  ^m  om )  /\  g : om -onto-> ( B 1o ) ) )
2524ex 115 . . . . . 6  |-  ( (
ph  /\  x  e.  om )  ->  ( g : om -onto-> ( B 1o )  ->  ( g  e.  ( ( B 1o )  ^m  om )  /\  g : om -onto-> ( B 1o ) ) ) )
2625eximdv 1894 . . . . 5  |-  ( (
ph  /\  x  e.  om )  ->  ( E. g  g : om -onto->
( B 1o )  ->  E. g ( g  e.  ( ( B 1o )  ^m  om )  /\  g : om -onto-> ( B 1o ) ) ) )
27 df-rex 2481 . . . . 5  |-  ( E. g  e.  ( ( B 1o )  ^m  om ) g : om -onto->
( B 1o )  <->  E. g ( g  e.  ( ( B 1o )  ^m  om )  /\  g : om -onto-> ( B 1o ) ) )
2826, 27imbitrrdi 162 . . . 4  |-  ( (
ph  /\  x  e.  om )  ->  ( E. g  g : om -onto->
( B 1o )  ->  E. g  e.  ( ( B 1o )  ^m  om ) g : om -onto-> ( B 1o ) ) )
293, 28mpd 13 . . 3  |-  ( (
ph  /\  x  e.  om )  ->  E. g  e.  ( ( B 1o )  ^m  om ) g : om -onto-> ( B 1o ) )
3029ralrimiva 2570 . 2  |-  ( ph  ->  A. x  e.  om  E. g  e.  ( ( B 1o )  ^m  om ) g : om -onto->
( B 1o )
)
311, 14, 16, 17, 30cc4n 7354 1  |-  ( ph  ->  E. f ( f  Fn  om  /\  A. x  e.  om  (
f `  x ) : om -onto-> ( B 1o ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476   {crab 2479   _Vcvv 2763   class class class wbr 4034   omcom 4627    X. cxp 4662    Fn wfn 5254   -->wf 5255   -onto->wfo 5257   ` cfv 5259  (class class class)co 5925   1oc1o 6476    ^m cmap 6716    ~~ cen 6806   ⊔ cdju 7112  CCHOICEwacc 7345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-er 6601  df-map 6718  df-en 6809  df-cc 7346
This theorem is referenced by:  omiunct  12686
  Copyright terms: Public domain W3C validator