ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omctfn Unicode version

Theorem omctfn 12444
Description: Using countable choice to find a sequence of enumerations for a collection of countable sets. Lemma 8.1.27 of [AczelRathjen], p. 77. (Contributed by Jim Kingdon, 19-Apr-2024.)
Hypotheses
Ref Expression
omiunct.cc  |-  ( ph  -> CCHOICE )
omiunct.g  |-  ( (
ph  /\  x  e.  om )  ->  E. g 
g : om -onto-> ( B 1o ) )
Assertion
Ref Expression
omctfn  |-  ( ph  ->  E. f ( f  Fn  om  /\  A. x  e.  om  (
f `  x ) : om -onto-> ( B 1o ) ) )
Distinct variable groups:    B, f, g    ph, f, x, g
Allowed substitution hint:    B( x)

Proof of Theorem omctfn
StepHypRef Expression
1 omiunct.cc . 2  |-  ( ph  -> CCHOICE )
2 fnmap 6655 . . . . 5  |-  ^m  Fn  ( _V  X.  _V )
3 omiunct.g . . . . . 6  |-  ( (
ph  /\  x  e.  om )  ->  E. g 
g : om -onto-> ( B 1o ) )
4 omex 4593 . . . . . . . 8  |-  om  e.  _V
5 focdmex 6116 . . . . . . . 8  |-  ( om  e.  _V  ->  (
g : om -onto-> ( B 1o )  ->  ( B 1o )  e.  _V ) )
64, 5ax-mp 5 . . . . . . 7  |-  ( g : om -onto-> ( B 1o )  ->  ( B 1o )  e.  _V )
76adantl 277 . . . . . 6  |-  ( ( ( ph  /\  x  e.  om )  /\  g : om -onto-> ( B 1o ) )  ->  ( B 1o )  e.  _V )
83, 7exlimddv 1898 . . . . 5  |-  ( (
ph  /\  x  e.  om )  ->  ( B 1o )  e.  _V )
94a1i 9 . . . . 5  |-  ( (
ph  /\  x  e.  om )  ->  om  e.  _V )
10 fnovex 5908 . . . . 5  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  ( B 1o )  e.  _V  /\ 
om  e.  _V )  ->  ( ( B 1o )  ^m  om )  e. 
_V )
112, 8, 9, 10mp3an2i 1342 . . . 4  |-  ( (
ph  /\  x  e.  om )  ->  ( ( B 1o )  ^m  om )  e.  _V )
12 rabexg 4147 . . . 4  |-  ( ( ( B 1o )  ^m  om )  e.  _V  ->  { g  e.  ( ( B 1o )  ^m  om )  |  g : om -onto-> ( B 1o ) }  e.  _V )
1311, 12syl 14 . . 3  |-  ( (
ph  /\  x  e.  om )  ->  { g  e.  ( ( B 1o )  ^m  om )  |  g : om -onto-> ( B 1o ) }  e.  _V )
1413ralrimiva 2550 . 2  |-  ( ph  ->  A. x  e.  om  { g  e.  ( ( B 1o )  ^m  om )  |  g : om -onto-> ( B 1o ) }  e.  _V )
154enref 6765 . . 3  |-  om  ~~  om
1615a1i 9 . 2  |-  ( ph  ->  om  ~~  om )
17 foeq1 5435 . 2  |-  ( g  =  ( f `  x )  ->  (
g : om -onto-> ( B 1o )  <->  ( f `  x ) : om -onto->
( B 1o )
) )
18 fof 5439 . . . . . . . . . 10  |-  ( g : om -onto-> ( B 1o )  ->  g : om --> ( B 1o ) )
1918adantl 277 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  om )  /\  g : om -onto-> ( B 1o ) )  ->  g : om
--> ( B 1o )
)
20 elmapg 6661 . . . . . . . . . 10  |-  ( ( ( B 1o )  e.  _V  /\  om  e.  _V )  ->  ( g  e.  ( ( B 1o )  ^m  om )  <->  g : om --> ( B 1o ) ) )
217, 4, 20sylancl 413 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  om )  /\  g : om -onto-> ( B 1o ) )  ->  ( g  e.  ( ( B 1o )  ^m  om )  <->  g : om
--> ( B 1o )
) )
2219, 21mpbird 167 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  om )  /\  g : om -onto-> ( B 1o ) )  ->  g  e.  ( ( B 1o )  ^m  om ) )
23 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  om )  /\  g : om -onto-> ( B 1o ) )  ->  g : om -onto-> ( B 1o ) )
2422, 23jca 306 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  om )  /\  g : om -onto-> ( B 1o ) )  ->  ( g  e.  ( ( B 1o )  ^m  om )  /\  g : om -onto-> ( B 1o ) ) )
2524ex 115 . . . . . 6  |-  ( (
ph  /\  x  e.  om )  ->  ( g : om -onto-> ( B 1o )  ->  ( g  e.  ( ( B 1o )  ^m  om )  /\  g : om -onto-> ( B 1o ) ) ) )
2625eximdv 1880 . . . . 5  |-  ( (
ph  /\  x  e.  om )  ->  ( E. g  g : om -onto->
( B 1o )  ->  E. g ( g  e.  ( ( B 1o )  ^m  om )  /\  g : om -onto-> ( B 1o ) ) ) )
27 df-rex 2461 . . . . 5  |-  ( E. g  e.  ( ( B 1o )  ^m  om ) g : om -onto->
( B 1o )  <->  E. g ( g  e.  ( ( B 1o )  ^m  om )  /\  g : om -onto-> ( B 1o ) ) )
2826, 27imbitrrdi 162 . . . 4  |-  ( (
ph  /\  x  e.  om )  ->  ( E. g  g : om -onto->
( B 1o )  ->  E. g  e.  ( ( B 1o )  ^m  om ) g : om -onto-> ( B 1o ) ) )
293, 28mpd 13 . . 3  |-  ( (
ph  /\  x  e.  om )  ->  E. g  e.  ( ( B 1o )  ^m  om ) g : om -onto-> ( B 1o ) )
3029ralrimiva 2550 . 2  |-  ( ph  ->  A. x  e.  om  E. g  e.  ( ( B 1o )  ^m  om ) g : om -onto->
( B 1o )
)
311, 14, 16, 17, 30cc4n 7270 1  |-  ( ph  ->  E. f ( f  Fn  om  /\  A. x  e.  om  (
f `  x ) : om -onto-> ( B 1o ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1492    e. wcel 2148   A.wral 2455   E.wrex 2456   {crab 2459   _Vcvv 2738   class class class wbr 4004   omcom 4590    X. cxp 4625    Fn wfn 5212   -->wf 5213   -onto->wfo 5215   ` cfv 5217  (class class class)co 5875   1oc1o 6410    ^m cmap 6648    ~~ cen 6738   ⊔ cdju 7036  CCHOICEwacc 7261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-er 6535  df-map 6650  df-en 6741  df-cc 7262
This theorem is referenced by:  omiunct  12445
  Copyright terms: Public domain W3C validator