ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  omctfn Unicode version

Theorem omctfn 12376
Description: Using countable choice to find a sequence of enumerations for a collection of countable sets. Lemma 8.1.27 of [AczelRathjen], p. 77. (Contributed by Jim Kingdon, 19-Apr-2024.)
Hypotheses
Ref Expression
omiunct.cc  |-  ( ph  -> CCHOICE )
omiunct.g  |-  ( (
ph  /\  x  e.  om )  ->  E. g 
g : om -onto-> ( B 1o ) )
Assertion
Ref Expression
omctfn  |-  ( ph  ->  E. f ( f  Fn  om  /\  A. x  e.  om  (
f `  x ) : om -onto-> ( B 1o ) ) )
Distinct variable groups:    B, f, g    ph, f, x, g
Allowed substitution hint:    B( x)

Proof of Theorem omctfn
StepHypRef Expression
1 omiunct.cc . 2  |-  ( ph  -> CCHOICE )
2 fnmap 6621 . . . . 5  |-  ^m  Fn  ( _V  X.  _V )
3 omiunct.g . . . . . 6  |-  ( (
ph  /\  x  e.  om )  ->  E. g 
g : om -onto-> ( B 1o ) )
4 omex 4570 . . . . . . . 8  |-  om  e.  _V
5 fornex 6083 . . . . . . . 8  |-  ( om  e.  _V  ->  (
g : om -onto-> ( B 1o )  ->  ( B 1o )  e.  _V ) )
64, 5ax-mp 5 . . . . . . 7  |-  ( g : om -onto-> ( B 1o )  ->  ( B 1o )  e.  _V )
76adantl 275 . . . . . 6  |-  ( ( ( ph  /\  x  e.  om )  /\  g : om -onto-> ( B 1o ) )  ->  ( B 1o )  e.  _V )
83, 7exlimddv 1886 . . . . 5  |-  ( (
ph  /\  x  e.  om )  ->  ( B 1o )  e.  _V )
94a1i 9 . . . . 5  |-  ( (
ph  /\  x  e.  om )  ->  om  e.  _V )
10 fnovex 5875 . . . . 5  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  ( B 1o )  e.  _V  /\ 
om  e.  _V )  ->  ( ( B 1o )  ^m  om )  e. 
_V )
112, 8, 9, 10mp3an2i 1332 . . . 4  |-  ( (
ph  /\  x  e.  om )  ->  ( ( B 1o )  ^m  om )  e.  _V )
12 rabexg 4125 . . . 4  |-  ( ( ( B 1o )  ^m  om )  e.  _V  ->  { g  e.  ( ( B 1o )  ^m  om )  |  g : om -onto-> ( B 1o ) }  e.  _V )
1311, 12syl 14 . . 3  |-  ( (
ph  /\  x  e.  om )  ->  { g  e.  ( ( B 1o )  ^m  om )  |  g : om -onto-> ( B 1o ) }  e.  _V )
1413ralrimiva 2539 . 2  |-  ( ph  ->  A. x  e.  om  { g  e.  ( ( B 1o )  ^m  om )  |  g : om -onto-> ( B 1o ) }  e.  _V )
154enref 6731 . . 3  |-  om  ~~  om
1615a1i 9 . 2  |-  ( ph  ->  om  ~~  om )
17 foeq1 5406 . 2  |-  ( g  =  ( f `  x )  ->  (
g : om -onto-> ( B 1o )  <->  ( f `  x ) : om -onto->
( B 1o )
) )
18 fof 5410 . . . . . . . . . 10  |-  ( g : om -onto-> ( B 1o )  ->  g : om --> ( B 1o ) )
1918adantl 275 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  om )  /\  g : om -onto-> ( B 1o ) )  ->  g : om
--> ( B 1o )
)
20 elmapg 6627 . . . . . . . . . 10  |-  ( ( ( B 1o )  e.  _V  /\  om  e.  _V )  ->  ( g  e.  ( ( B 1o )  ^m  om )  <->  g : om --> ( B 1o ) ) )
217, 4, 20sylancl 410 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  om )  /\  g : om -onto-> ( B 1o ) )  ->  ( g  e.  ( ( B 1o )  ^m  om )  <->  g : om
--> ( B 1o )
) )
2219, 21mpbird 166 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  om )  /\  g : om -onto-> ( B 1o ) )  ->  g  e.  ( ( B 1o )  ^m  om ) )
23 simpr 109 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  om )  /\  g : om -onto-> ( B 1o ) )  ->  g : om -onto-> ( B 1o ) )
2422, 23jca 304 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  om )  /\  g : om -onto-> ( B 1o ) )  ->  ( g  e.  ( ( B 1o )  ^m  om )  /\  g : om -onto-> ( B 1o ) ) )
2524ex 114 . . . . . 6  |-  ( (
ph  /\  x  e.  om )  ->  ( g : om -onto-> ( B 1o )  ->  ( g  e.  ( ( B 1o )  ^m  om )  /\  g : om -onto-> ( B 1o ) ) ) )
2625eximdv 1868 . . . . 5  |-  ( (
ph  /\  x  e.  om )  ->  ( E. g  g : om -onto->
( B 1o )  ->  E. g ( g  e.  ( ( B 1o )  ^m  om )  /\  g : om -onto-> ( B 1o ) ) ) )
27 df-rex 2450 . . . . 5  |-  ( E. g  e.  ( ( B 1o )  ^m  om ) g : om -onto->
( B 1o )  <->  E. g ( g  e.  ( ( B 1o )  ^m  om )  /\  g : om -onto-> ( B 1o ) ) )
2826, 27syl6ibr 161 . . . 4  |-  ( (
ph  /\  x  e.  om )  ->  ( E. g  g : om -onto->
( B 1o )  ->  E. g  e.  ( ( B 1o )  ^m  om ) g : om -onto-> ( B 1o ) ) )
293, 28mpd 13 . . 3  |-  ( (
ph  /\  x  e.  om )  ->  E. g  e.  ( ( B 1o )  ^m  om ) g : om -onto-> ( B 1o ) )
3029ralrimiva 2539 . 2  |-  ( ph  ->  A. x  e.  om  E. g  e.  ( ( B 1o )  ^m  om ) g : om -onto->
( B 1o )
)
311, 14, 16, 17, 30cc4n 7212 1  |-  ( ph  ->  E. f ( f  Fn  om  /\  A. x  e.  om  (
f `  x ) : om -onto-> ( B 1o ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   E.wex 1480    e. wcel 2136   A.wral 2444   E.wrex 2445   {crab 2448   _Vcvv 2726   class class class wbr 3982   omcom 4567    X. cxp 4602    Fn wfn 5183   -->wf 5184   -onto->wfo 5186   ` cfv 5188  (class class class)co 5842   1oc1o 6377    ^m cmap 6614    ~~ cen 6704   ⊔ cdju 7002  CCHOICEwacc 7203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-er 6501  df-map 6616  df-en 6707  df-cc 7204
This theorem is referenced by:  omiunct  12377
  Copyright terms: Public domain W3C validator