ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freccl Unicode version

Theorem freccl 6488
Description: Closure for finite recursion. (Contributed by Jim Kingdon, 27-Mar-2022.)
Hypotheses
Ref Expression
freccl.a  |-  ( ph  ->  A  e.  S )
freccl.cl  |-  ( (
ph  /\  z  e.  S )  ->  ( F `  z )  e.  S )
freccl.b  |-  ( ph  ->  B  e.  om )
Assertion
Ref Expression
freccl  |-  ( ph  ->  (frec ( F ,  A ) `  B
)  e.  S )
Distinct variable groups:    ph, z    z, S    z, F    z, A
Allowed substitution hint:    B( z)

Proof of Theorem freccl
Dummy variables  x  m  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 freccl.a . 2  |-  ( ph  ->  A  e.  S )
2 freccl.cl . 2  |-  ( (
ph  /\  z  e.  S )  ->  ( F `  z )  e.  S )
3 freccl.b . 2  |-  ( ph  ->  B  e.  om )
4 eqid 2204 . 2  |- recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  = recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
51, 2, 3, 4freccllem 6487 1  |-  ( ph  ->  (frec ( F ,  A ) `  B
)  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1372    e. wcel 2175   {cab 2190   E.wrex 2484   _Vcvv 2771   (/)c0 3459    |-> cmpt 4104   suc csuc 4411   omcom 4637   dom cdm 4674   ` cfv 5270  recscrecs 6389  freccfrec 6475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-recs 6390  df-frec 6476
This theorem is referenced by:  frec2uzzd  10543  frecuzrdgrrn  10551
  Copyright terms: Public domain W3C validator