ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freccl Unicode version

Theorem freccl 6461
Description: Closure for finite recursion. (Contributed by Jim Kingdon, 27-Mar-2022.)
Hypotheses
Ref Expression
freccl.a  |-  ( ph  ->  A  e.  S )
freccl.cl  |-  ( (
ph  /\  z  e.  S )  ->  ( F `  z )  e.  S )
freccl.b  |-  ( ph  ->  B  e.  om )
Assertion
Ref Expression
freccl  |-  ( ph  ->  (frec ( F ,  A ) `  B
)  e.  S )
Distinct variable groups:    ph, z    z, S    z, F    z, A
Allowed substitution hint:    B( z)

Proof of Theorem freccl
Dummy variables  x  m  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 freccl.a . 2  |-  ( ph  ->  A  e.  S )
2 freccl.cl . 2  |-  ( (
ph  /\  z  e.  S )  ->  ( F `  z )  e.  S )
3 freccl.b . 2  |-  ( ph  ->  B  e.  om )
4 eqid 2196 . 2  |- recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  = recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
51, 2, 3, 4freccllem 6460 1  |-  ( ph  ->  (frec ( F ,  A ) `  B
)  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167   {cab 2182   E.wrex 2476   _Vcvv 2763   (/)c0 3450    |-> cmpt 4094   suc csuc 4400   omcom 4626   dom cdm 4663   ` cfv 5258  recscrecs 6362  freccfrec 6448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-recs 6363  df-frec 6449
This theorem is referenced by:  frec2uzzd  10492  frecuzrdgrrn  10500
  Copyright terms: Public domain W3C validator