ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzzd Unicode version

Theorem frec2uzzd 9870
Description: The value of  G (see frec2uz0d 9869) is an integer. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frec2uzzd.a  |-  ( ph  ->  A  e.  om )
Assertion
Ref Expression
frec2uzzd  |-  ( ph  ->  ( G `  A
)  e.  ZZ )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    A( x)    G( x)

Proof of Theorem frec2uzzd
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 frec2uz.2 . . 3  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
21fveq1i 5321 . 2  |-  ( G `
 A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  A )
3 frec2uz.1 . . 3  |-  ( ph  ->  C  e.  ZZ )
4 simpr 109 . . . . 5  |-  ( (
ph  /\  k  e.  ZZ )  ->  k  e.  ZZ )
54peano2zd 8934 . . . . 5  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( k  +  1 )  e.  ZZ )
6 oveq1 5675 . . . . . 6  |-  ( x  =  k  ->  (
x  +  1 )  =  ( k  +  1 ) )
7 eqid 2089 . . . . . 6  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  =  ( x  e.  ZZ  |->  ( x  + 
1 ) )
86, 7fvmptg 5395 . . . . 5  |-  ( ( k  e.  ZZ  /\  ( k  +  1 )  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `
 k )  =  ( k  +  1 ) )
94, 5, 8syl2anc 404 . . . 4  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  k )  =  ( k  +  1 ) )
109, 5eqeltrd 2165 . . 3  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  k )  e.  ZZ )
11 frec2uzzd.a . . 3  |-  ( ph  ->  A  e.  om )
123, 10, 11freccl 6184 . 2  |-  ( ph  ->  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  A )  e.  ZZ )
132, 12syl5eqel 2175 1  |-  ( ph  ->  ( G `  A
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1290    e. wcel 1439    |-> cmpt 3907   omcom 4420   ` cfv 5030  (class class class)co 5668  freccfrec 6171   1c1 7414    + caddc 7416   ZZcz 8813
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3962  ax-sep 3965  ax-nul 3973  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-iinf 4418  ax-cnex 7499  ax-resscn 7500  ax-1cn 7501  ax-1re 7502  ax-icn 7503  ax-addcl 7504  ax-addrcl 7505  ax-mulcl 7506  ax-addcom 7508  ax-addass 7510  ax-distr 7512  ax-i2m1 7513  ax-0id 7516  ax-rnegex 7517  ax-cnre 7519
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2624  df-sbc 2844  df-csb 2937  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-nul 3290  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-iun 3740  df-br 3854  df-opab 3908  df-mpt 3909  df-tr 3945  df-id 4131  df-iord 4204  df-on 4206  df-ilim 4207  df-suc 4209  df-iom 4421  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-ima 4467  df-iota 4995  df-fun 5032  df-fn 5033  df-f 5034  df-f1 5035  df-fo 5036  df-f1o 5037  df-fv 5038  df-riota 5624  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-recs 6086  df-frec 6172  df-sub 7718  df-neg 7719  df-inn 8486  df-n0 8737  df-z 8814
This theorem is referenced by:  frec2uzsucd  9871  frec2uzltd  9873  frec2uzlt2d  9874  frec2uzf1od  9876  frec2uzrdg  9879  frec2uzled  9899
  Copyright terms: Public domain W3C validator