ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzzd Unicode version

Theorem frec2uzzd 10492
Description: The value of  G (see frec2uz0d 10491) is an integer. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frec2uzzd.a  |-  ( ph  ->  A  e.  om )
Assertion
Ref Expression
frec2uzzd  |-  ( ph  ->  ( G `  A
)  e.  ZZ )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    A( x)    G( x)

Proof of Theorem frec2uzzd
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 frec2uz.2 . . 3  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
21fveq1i 5559 . 2  |-  ( G `
 A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  A )
3 frec2uz.1 . . 3  |-  ( ph  ->  C  e.  ZZ )
4 simpr 110 . . . . 5  |-  ( (
ph  /\  k  e.  ZZ )  ->  k  e.  ZZ )
54peano2zd 9451 . . . . 5  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( k  +  1 )  e.  ZZ )
6 oveq1 5929 . . . . . 6  |-  ( x  =  k  ->  (
x  +  1 )  =  ( k  +  1 ) )
7 eqid 2196 . . . . . 6  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  =  ( x  e.  ZZ  |->  ( x  + 
1 ) )
86, 7fvmptg 5637 . . . . 5  |-  ( ( k  e.  ZZ  /\  ( k  +  1 )  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `
 k )  =  ( k  +  1 ) )
94, 5, 8syl2anc 411 . . . 4  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  k )  =  ( k  +  1 ) )
109, 5eqeltrd 2273 . . 3  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  k )  e.  ZZ )
11 frec2uzzd.a . . 3  |-  ( ph  ->  A  e.  om )
123, 10, 11freccl 6461 . 2  |-  ( ph  ->  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  A )  e.  ZZ )
132, 12eqeltrid 2283 1  |-  ( ph  ->  ( G `  A
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    |-> cmpt 4094   omcom 4626   ` cfv 5258  (class class class)co 5922  freccfrec 6448   1c1 7880    + caddc 7882   ZZcz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-recs 6363  df-frec 6449  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327
This theorem is referenced by:  frec2uzsucd  10493  frec2uzltd  10495  frec2uzlt2d  10496  frec2uzf1od  10498  frec2uzrdg  10501  frec2uzled  10521
  Copyright terms: Public domain W3C validator