ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzzd Unicode version

Theorem frec2uzzd 10471
Description: The value of  G (see frec2uz0d 10470) is an integer. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frec2uzzd.a  |-  ( ph  ->  A  e.  om )
Assertion
Ref Expression
frec2uzzd  |-  ( ph  ->  ( G `  A
)  e.  ZZ )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    A( x)    G( x)

Proof of Theorem frec2uzzd
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 frec2uz.2 . . 3  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
21fveq1i 5555 . 2  |-  ( G `
 A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  A )
3 frec2uz.1 . . 3  |-  ( ph  ->  C  e.  ZZ )
4 simpr 110 . . . . 5  |-  ( (
ph  /\  k  e.  ZZ )  ->  k  e.  ZZ )
54peano2zd 9442 . . . . 5  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( k  +  1 )  e.  ZZ )
6 oveq1 5925 . . . . . 6  |-  ( x  =  k  ->  (
x  +  1 )  =  ( k  +  1 ) )
7 eqid 2193 . . . . . 6  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  =  ( x  e.  ZZ  |->  ( x  + 
1 ) )
86, 7fvmptg 5633 . . . . 5  |-  ( ( k  e.  ZZ  /\  ( k  +  1 )  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `
 k )  =  ( k  +  1 ) )
94, 5, 8syl2anc 411 . . . 4  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  k )  =  ( k  +  1 ) )
109, 5eqeltrd 2270 . . 3  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  k )  e.  ZZ )
11 frec2uzzd.a . . 3  |-  ( ph  ->  A  e.  om )
123, 10, 11freccl 6456 . 2  |-  ( ph  ->  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  A )  e.  ZZ )
132, 12eqeltrid 2280 1  |-  ( ph  ->  ( G `  A
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    |-> cmpt 4090   omcom 4622   ` cfv 5254  (class class class)co 5918  freccfrec 6443   1c1 7873    + caddc 7875   ZZcz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-frec 6444  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318
This theorem is referenced by:  frec2uzsucd  10472  frec2uzltd  10474  frec2uzlt2d  10475  frec2uzf1od  10477  frec2uzrdg  10480  frec2uzled  10500
  Copyright terms: Public domain W3C validator