Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frec2uzzd | Unicode version |
Description: The value of (see frec2uz0d 10302) is an integer. (Contributed by Jim Kingdon, 16-May-2020.) |
Ref | Expression |
---|---|
frec2uz.1 | |
frec2uz.2 | frec |
frec2uzzd.a |
Ref | Expression |
---|---|
frec2uzzd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frec2uz.2 | . . 3 frec | |
2 | 1 | fveq1i 5470 | . 2 frec |
3 | frec2uz.1 | . . 3 | |
4 | simpr 109 | . . . . 5 | |
5 | 4 | peano2zd 9290 | . . . . 5 |
6 | oveq1 5832 | . . . . . 6 | |
7 | eqid 2157 | . . . . . 6 | |
8 | 6, 7 | fvmptg 5545 | . . . . 5 |
9 | 4, 5, 8 | syl2anc 409 | . . . 4 |
10 | 9, 5 | eqeltrd 2234 | . . 3 |
11 | frec2uzzd.a | . . 3 | |
12 | 3, 10, 11 | freccl 6351 | . 2 frec |
13 | 2, 12 | eqeltrid 2244 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 cmpt 4026 com 4550 cfv 5171 (class class class)co 5825 freccfrec 6338 c1 7734 caddc 7736 cz 9168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4080 ax-sep 4083 ax-nul 4091 ax-pow 4136 ax-pr 4170 ax-un 4394 ax-setind 4497 ax-iinf 4548 ax-cnex 7824 ax-resscn 7825 ax-1cn 7826 ax-1re 7827 ax-icn 7828 ax-addcl 7829 ax-addrcl 7830 ax-mulcl 7831 ax-addcom 7833 ax-addass 7835 ax-distr 7837 ax-i2m1 7838 ax-0id 7841 ax-rnegex 7842 ax-cnre 7844 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3774 df-int 3809 df-iun 3852 df-br 3967 df-opab 4027 df-mpt 4028 df-tr 4064 df-id 4254 df-iord 4327 df-on 4329 df-ilim 4330 df-suc 4332 df-iom 4551 df-xp 4593 df-rel 4594 df-cnv 4595 df-co 4596 df-dm 4597 df-rn 4598 df-res 4599 df-ima 4600 df-iota 5136 df-fun 5173 df-fn 5174 df-f 5175 df-f1 5176 df-fo 5177 df-f1o 5178 df-fv 5179 df-riota 5781 df-ov 5828 df-oprab 5829 df-mpo 5830 df-recs 6253 df-frec 6339 df-sub 8049 df-neg 8050 df-inn 8835 df-n0 9092 df-z 9169 |
This theorem is referenced by: frec2uzsucd 10304 frec2uzltd 10306 frec2uzlt2d 10307 frec2uzf1od 10309 frec2uzrdg 10312 frec2uzled 10332 |
Copyright terms: Public domain | W3C validator |