| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > freccl | GIF version | ||
| Description: Closure for finite recursion. (Contributed by Jim Kingdon, 27-Mar-2022.) |
| Ref | Expression |
|---|---|
| freccl.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| freccl.cl | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐹‘𝑧) ∈ 𝑆) |
| freccl.b | ⊢ (𝜑 → 𝐵 ∈ ω) |
| Ref | Expression |
|---|---|
| freccl | ⊢ (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | freccl.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 2 | freccl.cl | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐹‘𝑧) ∈ 𝑆) | |
| 3 | freccl.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ω) | |
| 4 | eqid 2206 | . 2 ⊢ recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) | |
| 5 | 1, 2, 3, 4 | freccllem 6495 | 1 ⊢ (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 = wceq 1373 ∈ wcel 2177 {cab 2192 ∃wrex 2486 Vcvv 2773 ∅c0 3461 ↦ cmpt 4109 suc csuc 4416 ωcom 4642 dom cdm 4679 ‘cfv 5276 recscrecs 6397 freccfrec 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-recs 6398 df-frec 6484 |
| This theorem is referenced by: frec2uzzd 10552 frecuzrdgrrn 10560 |
| Copyright terms: Public domain | W3C validator |