| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > freccl | GIF version | ||
| Description: Closure for finite recursion. (Contributed by Jim Kingdon, 27-Mar-2022.) |
| Ref | Expression |
|---|---|
| freccl.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| freccl.cl | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐹‘𝑧) ∈ 𝑆) |
| freccl.b | ⊢ (𝜑 → 𝐵 ∈ ω) |
| Ref | Expression |
|---|---|
| freccl | ⊢ (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | freccl.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 2 | freccl.cl | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐹‘𝑧) ∈ 𝑆) | |
| 3 | freccl.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ω) | |
| 4 | eqid 2209 | . 2 ⊢ recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) | |
| 5 | 1, 2, 3, 4 | freccllem 6518 | 1 ⊢ (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 712 = wceq 1375 ∈ wcel 2180 {cab 2195 ∃wrex 2489 Vcvv 2779 ∅c0 3471 ↦ cmpt 4124 suc csuc 4433 ωcom 4659 dom cdm 4696 ‘cfv 5294 recscrecs 6420 freccfrec 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-recs 6421 df-frec 6507 |
| This theorem is referenced by: frec2uzzd 10589 frecuzrdgrrn 10597 |
| Copyright terms: Public domain | W3C validator |