![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > freccl | GIF version |
Description: Closure for finite recursion. (Contributed by Jim Kingdon, 27-Mar-2022.) |
Ref | Expression |
---|---|
freccl.a | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
freccl.cl | ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐹‘𝑧) ∈ 𝑆) |
freccl.b | ⊢ (𝜑 → 𝐵 ∈ ω) |
Ref | Expression |
---|---|
freccl | ⊢ (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | freccl.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
2 | freccl.cl | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑆) → (𝐹‘𝑧) ∈ 𝑆) | |
3 | freccl.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ω) | |
4 | eqid 2193 | . 2 ⊢ recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) = recs((𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))})) | |
5 | 1, 2, 3, 4 | freccllem 6457 | 1 ⊢ (𝜑 → (frec(𝐹, 𝐴)‘𝐵) ∈ 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∨ wo 709 = wceq 1364 ∈ wcel 2164 {cab 2179 ∃wrex 2473 Vcvv 2760 ∅c0 3447 ↦ cmpt 4091 suc csuc 4397 ωcom 4623 dom cdm 4660 ‘cfv 5255 recscrecs 6359 freccfrec 6445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-recs 6360 df-frec 6446 |
This theorem is referenced by: frec2uzzd 10474 frecuzrdgrrn 10482 |
Copyright terms: Public domain | W3C validator |