ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgrrn Unicode version

Theorem frecuzrdgrrn 10311
Description: The function  R (used in the definition of the recursive definition generator on upper integers) yields ordered pairs of integers and elements of 
S. (Contributed by Jim Kingdon, 28-Mar-2022.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frecuzrdgrrn.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrrn.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrrn.2  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
Assertion
Ref Expression
frecuzrdgrrn  |-  ( (
ph  /\  D  e.  om )  ->  ( R `  D )  e.  ( ( ZZ>= `  C )  X.  S ) )
Distinct variable groups:    y, A    x, C, y    y, G    x, F, y    x, S, y    ph, x, y
Allowed substitution hints:    A( x)    D( x, y)    R( x, y)    G( x)

Proof of Theorem frecuzrdgrrn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 frecuzrdgrrn.2 . . 3  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
21fveq1i 5470 . 2  |-  ( R `
 D )  =  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  D
)
3 frec2uz.1 . . . . . 6  |-  ( ph  ->  C  e.  ZZ )
4 uzid 9454 . . . . . 6  |-  ( C  e.  ZZ  ->  C  e.  ( ZZ>= `  C )
)
53, 4syl 14 . . . . 5  |-  ( ph  ->  C  e.  ( ZZ>= `  C ) )
6 frecuzrdgrrn.a . . . . 5  |-  ( ph  ->  A  e.  S )
7 opelxp 4617 . . . . 5  |-  ( <. C ,  A >.  e.  ( ( ZZ>= `  C
)  X.  S )  <-> 
( C  e.  (
ZZ>= `  C )  /\  A  e.  S )
)
85, 6, 7sylanbrc 414 . . . 4  |-  ( ph  -> 
<. C ,  A >.  e.  ( ( ZZ>= `  C
)  X.  S ) )
98adantr 274 . . 3  |-  ( (
ph  /\  D  e.  om )  ->  <. C ,  A >.  e.  ( (
ZZ>= `  C )  X.  S ) )
10 1st2nd2 6124 . . . . . . 7  |-  ( z  e.  ( ( ZZ>= `  C )  X.  S
)  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
11 fveq2 5469 . . . . . . . 8  |-  ( z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  ->  (
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  z )  =  ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. ) )
12 df-ov 5828 . . . . . . . 8  |-  ( ( 1st `  z ) ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  z
) )  =  ( ( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )
1311, 12eqtr4di 2208 . . . . . . 7  |-  ( z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  ->  (
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) `  z )  =  ( ( 1st `  z ) ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ( 2nd `  z
) ) )
1410, 13syl 14 . . . . . 6  |-  ( z  e.  ( ( ZZ>= `  C )  X.  S
)  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  =  ( ( 1st `  z
) ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  z
) ) )
1514adantl 275 . . . . 5  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  =  ( ( 1st `  z
) ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  z
) ) )
16 xp1st 6114 . . . . . . 7  |-  ( z  e.  ( ( ZZ>= `  C )  X.  S
)  ->  ( 1st `  z )  e.  (
ZZ>= `  C ) )
1716adantl 275 . . . . . 6  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( 1st `  z )  e.  (
ZZ>= `  C ) )
18 xp2nd 6115 . . . . . . 7  |-  ( z  e.  ( ( ZZ>= `  C )  X.  S
)  ->  ( 2nd `  z )  e.  S
)
1918adantl 275 . . . . . 6  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( 2nd `  z )  e.  S
)
20 peano2uz 9495 . . . . . . . 8  |-  ( ( 1st `  z )  e.  ( ZZ>= `  C
)  ->  ( ( 1st `  z )  +  1 )  e.  (
ZZ>= `  C ) )
2117, 20syl 14 . . . . . . 7  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( ( 1st `  z )  +  1 )  e.  (
ZZ>= `  C ) )
22 frecuzrdgrrn.f . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
2322ralrimivva 2539 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  (
ZZ>= `  C ) A. y  e.  S  (
x F y )  e.  S )
2423ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  A. x  e.  ( ZZ>= `  C ) A. y  e.  S  ( x F y )  e.  S )
25 oveq1 5832 . . . . . . . . . . 11  |-  ( x  =  ( 1st `  z
)  ->  ( x F y )  =  ( ( 1st `  z
) F y ) )
2625eleq1d 2226 . . . . . . . . . 10  |-  ( x  =  ( 1st `  z
)  ->  ( (
x F y )  e.  S  <->  ( ( 1st `  z ) F y )  e.  S
) )
27 oveq2 5833 . . . . . . . . . . 11  |-  ( y  =  ( 2nd `  z
)  ->  ( ( 1st `  z ) F y )  =  ( ( 1st `  z
) F ( 2nd `  z ) ) )
2827eleq1d 2226 . . . . . . . . . 10  |-  ( y  =  ( 2nd `  z
)  ->  ( (
( 1st `  z
) F y )  e.  S  <->  ( ( 1st `  z ) F ( 2nd `  z
) )  e.  S
) )
2926, 28rspc2v 2829 . . . . . . . . 9  |-  ( ( ( 1st `  z
)  e.  ( ZZ>= `  C )  /\  ( 2nd `  z )  e.  S )  ->  ( A. x  e.  ( ZZ>=
`  C ) A. y  e.  S  (
x F y )  e.  S  ->  (
( 1st `  z
) F ( 2nd `  z ) )  e.  S ) )
3017, 19, 29syl2anc 409 . . . . . . . 8  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( A. x  e.  ( ZZ>= `  C ) A. y  e.  S  ( x F y )  e.  S  ->  ( ( 1st `  z ) F ( 2nd `  z
) )  e.  S
) )
3124, 30mpd 13 . . . . . . 7  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( ( 1st `  z ) F ( 2nd `  z
) )  e.  S
)
32 opelxp 4617 . . . . . . 7  |-  ( <.
( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >.  e.  (
( ZZ>= `  C )  X.  S )  <->  ( (
( 1st `  z
)  +  1 )  e.  ( ZZ>= `  C
)  /\  ( ( 1st `  z ) F ( 2nd `  z
) )  e.  S
) )
3321, 31, 32sylanbrc 414 . . . . . 6  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  <. ( ( 1st `  z )  +  1 ) ,  ( ( 1st `  z
) F ( 2nd `  z ) ) >.  e.  ( ( ZZ>= `  C
)  X.  S ) )
34 oveq1 5832 . . . . . . . 8  |-  ( x  =  ( 1st `  z
)  ->  ( x  +  1 )  =  ( ( 1st `  z
)  +  1 ) )
3534, 25opeq12d 3750 . . . . . . 7  |-  ( x  =  ( 1st `  z
)  ->  <. ( x  +  1 ) ,  ( x F y ) >.  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F y ) >. )
3627opeq2d 3749 . . . . . . 7  |-  ( y  =  ( 2nd `  z
)  ->  <. ( ( 1st `  z )  +  1 ) ,  ( ( 1st `  z
) F y )
>.  =  <. ( ( 1st `  z )  +  1 ) ,  ( ( 1st `  z
) F ( 2nd `  z ) ) >.
)
37 eqid 2157 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. )  =  (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. )
3835, 36, 37ovmpog 5956 . . . . . 6  |-  ( ( ( 1st `  z
)  e.  ( ZZ>= `  C )  /\  ( 2nd `  z )  e.  S  /\  <. (
( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >.  e.  (
( ZZ>= `  C )  X.  S ) )  -> 
( ( 1st `  z
) ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ( 2nd `  z
) )  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >. )
3917, 19, 33, 38syl3anc 1220 . . . . 5  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( ( 1st `  z ) ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. )
( 2nd `  z
) )  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >. )
4015, 39eqtrd 2190 . . . 4  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  =  <. ( ( 1st `  z
)  +  1 ) ,  ( ( 1st `  z ) F ( 2nd `  z ) ) >. )
4140, 33eqeltrd 2234 . . 3  |-  ( ( ( ph  /\  D  e.  om )  /\  z  e.  ( ( ZZ>= `  C
)  X.  S ) )  ->  ( (
x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) `  z )  e.  ( ( ZZ>= `  C )  X.  S ) )
42 simpr 109 . . 3  |-  ( (
ph  /\  D  e.  om )  ->  D  e.  om )
439, 41, 42freccl 6351 . 2  |-  ( (
ph  /\  D  e.  om )  ->  (frec (
( x  e.  (
ZZ>= `  C ) ,  y  e.  S  |->  <.
( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  D
)  e.  ( (
ZZ>= `  C )  X.  S ) )
442, 43eqeltrid 2244 1  |-  ( (
ph  /\  D  e.  om )  ->  ( R `  D )  e.  ( ( ZZ>= `  C )  X.  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   A.wral 2435   <.cop 3563    |-> cmpt 4026   omcom 4550    X. cxp 4585   ` cfv 5171  (class class class)co 5825    e. cmpo 5827   1stc1st 6087   2ndc2nd 6088  freccfrec 6338   1c1 7734    + caddc 7736   ZZcz 9168   ZZ>=cuz 9440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-nul 4091  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-iinf 4548  ax-cnex 7824  ax-resscn 7825  ax-1cn 7826  ax-1re 7827  ax-icn 7828  ax-addcl 7829  ax-addrcl 7830  ax-mulcl 7831  ax-addcom 7833  ax-addass 7835  ax-distr 7837  ax-i2m1 7838  ax-0lt1 7839  ax-0id 7841  ax-rnegex 7842  ax-cnre 7844  ax-pre-ltirr 7845  ax-pre-ltwlin 7846  ax-pre-lttrn 7847  ax-pre-ltadd 7849
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-tr 4064  df-id 4254  df-iord 4327  df-on 4329  df-ilim 4330  df-suc 4332  df-iom 4551  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-riota 5781  df-ov 5828  df-oprab 5829  df-mpo 5830  df-1st 6089  df-2nd 6090  df-recs 6253  df-frec 6339  df-pnf 7915  df-mnf 7916  df-xr 7917  df-ltxr 7918  df-le 7919  df-sub 8049  df-neg 8050  df-inn 8835  df-n0 9092  df-z 9169  df-uz 9441
This theorem is referenced by:  frec2uzrdg  10312  frecuzrdgtcl  10315  frecuzrdgsuc  10317
  Copyright terms: Public domain W3C validator