ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgsuct Unicode version

Theorem frecuzrdgsuct 10426
Description: Successor value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 29-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c  |-  ( ph  ->  C  e.  ZZ )
frecuzrdgrclt.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrclt.t  |-  ( ph  ->  S  C_  T )
frecuzrdgrclt.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrclt.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdgsuct.ran  |-  ( ph  ->  P  =  ran  R
)
Assertion
Ref Expression
frecuzrdgsuct  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( P `  ( B  +  1 ) )  =  ( B F ( P `
 B ) ) )
Distinct variable groups:    x, C, y   
x, F, y    x, S, y    x, T, y    ph, x, y    x, B, y    x, R, y
Allowed substitution hints:    A( x, y)    P( x, y)

Proof of Theorem frecuzrdgsuct
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 frecuzrdgrclt.c . 2  |-  ( ph  ->  C  e.  ZZ )
2 frecuzrdgrclt.a . 2  |-  ( ph  ->  A  e.  S )
3 frecuzrdgrclt.t . 2  |-  ( ph  ->  S  C_  T )
4 frecuzrdgrclt.f . 2  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrclt.r . 2  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
6 oveq1 5884 . . . 4  |-  ( z  =  x  ->  (
z  +  1 )  =  ( x  + 
1 ) )
76cbvmptv 4101 . . 3  |-  ( z  e.  ZZ  |->  ( z  +  1 ) )  =  ( x  e.  ZZ  |->  ( x  + 
1 ) )
8 freceq1 6395 . . 3  |-  ( ( z  e.  ZZ  |->  ( z  +  1 ) )  =  ( x  e.  ZZ  |->  ( x  +  1 ) )  -> frec ( ( z  e.  ZZ  |->  ( z  +  1 ) ) ,  C )  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C ) )
97, 8ax-mp 5 . 2  |- frec ( ( z  e.  ZZ  |->  ( z  +  1 ) ) ,  C )  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )
10 frecuzrdgsuct.ran . 2  |-  ( ph  ->  P  =  ran  R
)
111, 2, 3, 4, 5, 9, 10frecuzrdgsuctlem 10425 1  |-  ( (
ph  /\  B  e.  ( ZZ>= `  C )
)  ->  ( P `  ( B  +  1 ) )  =  ( B F ( P `
 B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148    C_ wss 3131   <.cop 3597    |-> cmpt 4066   ran crn 4629   ` cfv 5218  (class class class)co 5877    e. cmpo 5879  freccfrec 6393   1c1 7814    + caddc 7816   ZZcz 9255   ZZ>=cuz 9530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531
This theorem is referenced by:  seq3p1  10464  seqp1cd  10468
  Copyright terms: Public domain W3C validator