ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgdom Unicode version

Theorem frecuzrdgdom 10131
Description: The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c  |-  ( ph  ->  C  e.  ZZ )
frecuzrdgrclt.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrclt.t  |-  ( ph  ->  S  C_  T )
frecuzrdgrclt.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrclt.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
Assertion
Ref Expression
frecuzrdgdom  |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C )
)
Distinct variable groups:    x, C, y   
x, F, y    x, S, y    x, T, y    ph, x, y    x, R, y
Allowed substitution hints:    A( x, y)

Proof of Theorem frecuzrdgdom
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 frecuzrdgrclt.c . 2  |-  ( ph  ->  C  e.  ZZ )
2 frecuzrdgrclt.a . 2  |-  ( ph  ->  A  e.  S )
3 frecuzrdgrclt.t . 2  |-  ( ph  ->  S  C_  T )
4 frecuzrdgrclt.f . 2  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrclt.r . 2  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
6 oveq1 5747 . . . 4  |-  ( z  =  x  ->  (
z  +  1 )  =  ( x  + 
1 ) )
76cbvmptv 3992 . . 3  |-  ( z  e.  ZZ  |->  ( z  +  1 ) )  =  ( x  e.  ZZ  |->  ( x  + 
1 ) )
8 freceq1 6255 . . 3  |-  ( ( z  e.  ZZ  |->  ( z  +  1 ) )  =  ( x  e.  ZZ  |->  ( x  +  1 ) )  -> frec ( ( z  e.  ZZ  |->  ( z  +  1 ) ) ,  C )  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C ) )
97, 8ax-mp 5 . 2  |- frec ( ( z  e.  ZZ  |->  ( z  +  1 ) ) ,  C )  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )
101, 2, 3, 4, 5, 9frecuzrdgdomlem 10130 1  |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1314    e. wcel 1463    C_ wss 3039   <.cop 3498    |-> cmpt 3957   dom cdm 4507   ran crn 4508   ` cfv 5091  (class class class)co 5740    e. cmpo 5742  freccfrec 6253   1c1 7585    + caddc 7587   ZZcz 9005   ZZ>=cuz 9275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-ltadd 7700
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-inn 8678  df-n0 8929  df-z 9006  df-uz 9276
This theorem is referenced by:  frecuzrdgfunlem  10132  frecuzrdgtclt  10134
  Copyright terms: Public domain W3C validator