ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgdom Unicode version

Theorem frecuzrdgdom 10295
Description: The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c  |-  ( ph  ->  C  e.  ZZ )
frecuzrdgrclt.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrclt.t  |-  ( ph  ->  S  C_  T )
frecuzrdgrclt.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrclt.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
Assertion
Ref Expression
frecuzrdgdom  |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C )
)
Distinct variable groups:    x, C, y   
x, F, y    x, S, y    x, T, y    ph, x, y    x, R, y
Allowed substitution hints:    A( x, y)

Proof of Theorem frecuzrdgdom
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 frecuzrdgrclt.c . 2  |-  ( ph  ->  C  e.  ZZ )
2 frecuzrdgrclt.a . 2  |-  ( ph  ->  A  e.  S )
3 frecuzrdgrclt.t . 2  |-  ( ph  ->  S  C_  T )
4 frecuzrdgrclt.f . 2  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrclt.r . 2  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
6 oveq1 5821 . . . 4  |-  ( z  =  x  ->  (
z  +  1 )  =  ( x  + 
1 ) )
76cbvmptv 4056 . . 3  |-  ( z  e.  ZZ  |->  ( z  +  1 ) )  =  ( x  e.  ZZ  |->  ( x  + 
1 ) )
8 freceq1 6329 . . 3  |-  ( ( z  e.  ZZ  |->  ( z  +  1 ) )  =  ( x  e.  ZZ  |->  ( x  +  1 ) )  -> frec ( ( z  e.  ZZ  |->  ( z  +  1 ) ) ,  C )  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C ) )
97, 8ax-mp 5 . 2  |- frec ( ( z  e.  ZZ  |->  ( z  +  1 ) ) ,  C )  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C )
101, 2, 3, 4, 5, 9frecuzrdgdomlem 10294 1  |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 2125    C_ wss 3098   <.cop 3559    |-> cmpt 4021   dom cdm 4579   ran crn 4580   ` cfv 5163  (class class class)co 5814    e. cmpo 5816  freccfrec 6327   1c1 7712    + caddc 7714   ZZcz 9146   ZZ>=cuz 9418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-addass 7813  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-0id 7819  ax-rnegex 7820  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-ltadd 7827
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-frec 6328  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-inn 8813  df-n0 9070  df-z 9147  df-uz 9419
This theorem is referenced by:  frecuzrdgfunlem  10296  frecuzrdgtclt  10298
  Copyright terms: Public domain W3C validator