ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfz1 Unicode version

Theorem hashfz1 10497
Description: The set  (
1 ... N ) has  N elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashfz1  |-  ( N  e.  NN0  ->  ( `  (
1 ... N ) )  =  N )

Proof of Theorem hashfz1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0zd 9034 . . . . . 6  |-  ( N  e.  NN0  ->  0  e.  ZZ )
2 eqid 2117 . . . . . 6  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )
31, 2frec2uzf1od 10147 . . . . 5  |-  ( N  e.  NN0  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) : om -1-1-onto-> ( ZZ>= `  0 )
)
4 f1ocnv 5348 . . . . 5  |-  (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) : om -1-1-onto-> ( ZZ>= `  0 )  ->  `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) : (
ZZ>= `  0 ) -1-1-onto-> om )
5 f1of 5335 . . . . 5  |-  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) : (
ZZ>= `  0 ) -1-1-onto-> om  ->  `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) : (
ZZ>= `  0 ) --> om )
63, 4, 53syl 17 . . . 4  |-  ( N  e.  NN0  ->  `'frec (
( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) : ( ZZ>= ` 
0 ) --> om )
7 elnn0uz 9331 . . . . 5  |-  ( N  e.  NN0  <->  N  e.  ( ZZ>=
`  0 ) )
87biimpi 119 . . . 4  |-  ( N  e.  NN0  ->  N  e.  ( ZZ>= `  0 )
)
96, 8ffvelrnd 5524 . . 3  |-  ( N  e.  NN0  ->  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
)  e.  om )
102frecfzennn 10167 . . . 4  |-  ( N  e.  NN0  ->  ( 1 ... N )  ~~  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )
1110ensymd 6645 . . 3  |-  ( N  e.  NN0  ->  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
)  ~~  ( 1 ... N ) )
12 hashennn 10494 . . 3  |-  ( ( ( `'frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `
 N )  e. 
om  /\  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
)  ~~  ( 1 ... N ) )  ->  ( `  ( 1 ... N ) )  =  (frec ( ( y  e.  ZZ  |->  ( y  +  1 ) ) ,  0 ) `  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) ) )
139, 11, 12syl2anc 408 . 2  |-  ( N  e.  NN0  ->  ( `  (
1 ... N ) )  =  (frec ( ( y  e.  ZZ  |->  ( y  +  1 ) ) ,  0 ) `
 ( `'frec (
( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) `  N ) ) )
14 oveq1 5749 . . . . . . 7  |-  ( x  =  y  ->  (
x  +  1 )  =  ( y  +  1 ) )
1514cbvmptv 3994 . . . . . 6  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  =  ( y  e.  ZZ  |->  ( y  +  1 ) )
16 freceq1 6257 . . . . . 6  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) )  =  ( y  e.  ZZ  |->  ( y  +  1 ) )  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  = frec ( ( y  e.  ZZ  |->  ( y  +  1 ) ) ,  0 ) )
1715, 16ax-mp 5 . . . . 5  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  = frec ( ( y  e.  ZZ  |->  ( y  +  1 ) ) ,  0 )
1817fveq1i 5390 . . . 4  |-  (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) `  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )  =  (frec ( ( y  e.  ZZ  |->  ( y  +  1 ) ) ,  0 ) `  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )
19 f1ocnvfv2 5647 . . . 4  |-  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) : om -1-1-onto-> ( ZZ>=
`  0 )  /\  N  e.  ( ZZ>= ` 
0 ) )  -> 
(frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )  =  N )
2018, 19syl5eqr 2164 . . 3  |-  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) : om -1-1-onto-> ( ZZ>=
`  0 )  /\  N  e.  ( ZZ>= ` 
0 ) )  -> 
(frec ( ( y  e.  ZZ  |->  ( y  +  1 ) ) ,  0 ) `  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )  =  N )
213, 8, 20syl2anc 408 . 2  |-  ( N  e.  NN0  ->  (frec ( ( y  e.  ZZ  |->  ( y  +  1 ) ) ,  0 ) `  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )  =  N )
2213, 21eqtrd 2150 1  |-  ( N  e.  NN0  ->  ( `  (
1 ... N ) )  =  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1316    e. wcel 1465   class class class wbr 3899    |-> cmpt 3959   omcom 4474   `'ccnv 4508   -->wf 5089   -1-1-onto->wf1o 5092   ` cfv 5093  (class class class)co 5742  freccfrec 6255    ~~ cen 6600   0cc0 7588   1c1 7589    + caddc 7591   NN0cn0 8945   ZZcz 9022   ZZ>=cuz 9294   ...cfz 9758  ♯chash 10489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-recs 6170  df-frec 6256  df-1o 6281  df-er 6397  df-en 6603  df-dom 6604  df-fin 6605  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-n0 8946  df-z 9023  df-uz 9295  df-fz 9759  df-ihash 10490
This theorem is referenced by:  fz1eqb  10505  isfinite4im  10507  fihasheq0  10508  hashsng  10512  fseq1hash  10515  hashfz  10535  isummolemnm  11116  summodclem2a  11118  summodc  11120  zsumdc  11121  fsum3  11124  mertenslemi1  11272  phicl2  11817  phibnd  11820  hashdvds  11824  phiprmpw  11825
  Copyright terms: Public domain W3C validator