ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfz1 Unicode version

Theorem hashfz1 10717
Description: The set  (
1 ... N ) has  N elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashfz1  |-  ( N  e.  NN0  ->  ( `  (
1 ... N ) )  =  N )

Proof of Theorem hashfz1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0zd 9224 . . . . . 6  |-  ( N  e.  NN0  ->  0  e.  ZZ )
2 eqid 2170 . . . . . 6  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )
31, 2frec2uzf1od 10362 . . . . 5  |-  ( N  e.  NN0  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) : om -1-1-onto-> ( ZZ>= `  0 )
)
4 f1ocnv 5455 . . . . 5  |-  (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) : om -1-1-onto-> ( ZZ>= `  0 )  ->  `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) : (
ZZ>= `  0 ) -1-1-onto-> om )
5 f1of 5442 . . . . 5  |-  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) : (
ZZ>= `  0 ) -1-1-onto-> om  ->  `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) : (
ZZ>= `  0 ) --> om )
63, 4, 53syl 17 . . . 4  |-  ( N  e.  NN0  ->  `'frec (
( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) : ( ZZ>= ` 
0 ) --> om )
7 elnn0uz 9524 . . . . 5  |-  ( N  e.  NN0  <->  N  e.  ( ZZ>=
`  0 ) )
87biimpi 119 . . . 4  |-  ( N  e.  NN0  ->  N  e.  ( ZZ>= `  0 )
)
96, 8ffvelrnd 5632 . . 3  |-  ( N  e.  NN0  ->  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
)  e.  om )
102frecfzennn 10382 . . . 4  |-  ( N  e.  NN0  ->  ( 1 ... N )  ~~  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )
1110ensymd 6761 . . 3  |-  ( N  e.  NN0  ->  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
)  ~~  ( 1 ... N ) )
12 hashennn 10714 . . 3  |-  ( ( ( `'frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `
 N )  e. 
om  /\  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
)  ~~  ( 1 ... N ) )  ->  ( `  ( 1 ... N ) )  =  (frec ( ( y  e.  ZZ  |->  ( y  +  1 ) ) ,  0 ) `  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) ) )
139, 11, 12syl2anc 409 . 2  |-  ( N  e.  NN0  ->  ( `  (
1 ... N ) )  =  (frec ( ( y  e.  ZZ  |->  ( y  +  1 ) ) ,  0 ) `
 ( `'frec (
( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) `  N ) ) )
14 oveq1 5860 . . . . . . 7  |-  ( x  =  y  ->  (
x  +  1 )  =  ( y  +  1 ) )
1514cbvmptv 4085 . . . . . 6  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  =  ( y  e.  ZZ  |->  ( y  +  1 ) )
16 freceq1 6371 . . . . . 6  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) )  =  ( y  e.  ZZ  |->  ( y  +  1 ) )  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  = frec ( ( y  e.  ZZ  |->  ( y  +  1 ) ) ,  0 ) )
1715, 16ax-mp 5 . . . . 5  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  = frec ( ( y  e.  ZZ  |->  ( y  +  1 ) ) ,  0 )
1817fveq1i 5497 . . . 4  |-  (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) `  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )  =  (frec ( ( y  e.  ZZ  |->  ( y  +  1 ) ) ,  0 ) `  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )
19 f1ocnvfv2 5757 . . . 4  |-  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) : om -1-1-onto-> ( ZZ>=
`  0 )  /\  N  e.  ( ZZ>= ` 
0 ) )  -> 
(frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )  =  N )
2018, 19eqtr3id 2217 . . 3  |-  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) : om -1-1-onto-> ( ZZ>=
`  0 )  /\  N  e.  ( ZZ>= ` 
0 ) )  -> 
(frec ( ( y  e.  ZZ  |->  ( y  +  1 ) ) ,  0 ) `  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )  =  N )
213, 8, 20syl2anc 409 . 2  |-  ( N  e.  NN0  ->  (frec ( ( y  e.  ZZ  |->  ( y  +  1 ) ) ,  0 ) `  ( `'frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )  =  N )
2213, 21eqtrd 2203 1  |-  ( N  e.  NN0  ->  ( `  (
1 ... N ) )  =  N )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   class class class wbr 3989    |-> cmpt 4050   omcom 4574   `'ccnv 4610   -->wf 5194   -1-1-onto->wf1o 5197   ` cfv 5198  (class class class)co 5853  freccfrec 6369    ~~ cen 6716   0cc0 7774   1c1 7775    + caddc 7777   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487   ...cfz 9965  ♯chash 10709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-recs 6284  df-frec 6370  df-1o 6395  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-ihash 10710
This theorem is referenced by:  fz1eqb  10725  isfinite4im  10727  fihasheq0  10728  hashsng  10733  fseq1hash  10736  hashfz  10756  nnf1o  11339  summodclem2a  11344  summodc  11346  zsumdc  11347  fsum3  11350  mertenslemi1  11498  prodmodclem3  11538  prodmodclem2a  11539  zproddc  11542  fprodseq  11546  phicl2  12168  phibnd  12171  hashdvds  12175  phiprmpw  12176  eulerth  12187  pcfac  12302
  Copyright terms: Public domain W3C validator