Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  ismkvnn Unicode version

Theorem ismkvnn 16194
Description: The predicate of being Markov stated in terms of set exponentiation. (Contributed by Jim Kingdon, 25-Jun-2024.)
Assertion
Ref Expression
ismkvnn  |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( -.  A. x  e.  A  ( f `  x )  =  1  ->  E. x  e.  A  ( f `  x
)  =  0 ) ) )
Distinct variable groups:    A, f, x   
f, V, x

Proof of Theorem ismkvnn
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 oveq1 5974 . . . 4  |-  ( a  =  x  ->  (
a  +  1 )  =  ( x  + 
1 ) )
21cbvmptv 4156 . . 3  |-  ( a  e.  ZZ  |->  ( a  +  1 ) )  =  ( x  e.  ZZ  |->  ( x  + 
1 ) )
3 freceq1 6501 . . 3  |-  ( ( a  e.  ZZ  |->  ( a  +  1 ) )  =  ( x  e.  ZZ  |->  ( x  +  1 ) )  -> frec ( ( a  e.  ZZ  |->  ( a  +  1 ) ) ,  0 )  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) )
42, 3ax-mp 5 . 2  |- frec ( ( a  e.  ZZ  |->  ( a  +  1 ) ) ,  0 )  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )
54ismkvnnlem 16193 1  |-  ( A  e.  V  ->  ( A  e. Markov  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( -.  A. x  e.  A  ( f `  x )  =  1  ->  E. x  e.  A  ( f `  x
)  =  0 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   {cpr 3644    |-> cmpt 4121   ` cfv 5290  (class class class)co 5967  freccfrec 6499    ^m cmap 6758  Markovcmarkov 7279   0cc0 7960   1c1 7961    + caddc 7963   ZZcz 9407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-recs 6414  df-frec 6500  df-1o 6525  df-2o 6526  df-map 6760  df-markov 7280  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684
This theorem is referenced by:  neapmkv  16209
  Copyright terms: Public domain W3C validator