Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  isomninn Unicode version

Theorem isomninn 13564
Description: Omniscience stated in terms of natural numbers. Similar to isomnimap 7063 but it will sometimes be more convenient to use  0 and  1 rather than  (/) and  1o. (Contributed by Jim Kingdon, 30-Aug-2023.)
Assertion
Ref Expression
isomninn  |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) ) )
Distinct variable groups:    A, f, x   
f, V, x

Proof of Theorem isomninn
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 oveq1 5825 . . . 4  |-  ( a  =  x  ->  (
a  +  1 )  =  ( x  + 
1 ) )
21cbvmptv 4060 . . 3  |-  ( a  e.  ZZ  |->  ( a  +  1 ) )  =  ( x  e.  ZZ  |->  ( x  + 
1 ) )
3 freceq1 6333 . . 3  |-  ( ( a  e.  ZZ  |->  ( a  +  1 ) )  =  ( x  e.  ZZ  |->  ( x  +  1 ) )  -> frec ( ( a  e.  ZZ  |->  ( a  +  1 ) ) ,  0 )  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) )
42, 3ax-mp 5 . 2  |- frec ( ( a  e.  ZZ  |->  ( a  +  1 ) ) ,  0 )  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )
54isomninnlem 13563 1  |-  ( A  e.  V  ->  ( A  e. Omni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A ) ( E. x  e.  A  ( f `  x )  =  0  \/  A. x  e.  A  ( f `  x )  =  1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 698    = wceq 1335    e. wcel 2128   A.wral 2435   E.wrex 2436   {cpr 3561    |-> cmpt 4025   ` cfv 5167  (class class class)co 5818  freccfrec 6331    ^m cmap 6586  Omnicomni 7060   0cc0 7715   1c1 7716    + caddc 7718   ZZcz 9150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-addcom 7815  ax-addass 7817  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-0id 7823  ax-rnegex 7824  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-ltadd 7831
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-recs 6246  df-frec 6332  df-1o 6357  df-2o 6358  df-map 6588  df-omni 7061  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-inn 8817  df-n0 9074  df-z 9151  df-uz 9423
This theorem is referenced by:  trilpolemlt1  13574  trilpo  13576
  Copyright terms: Public domain W3C validator