ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvresi GIF version

Theorem fvresi 5832
Description: The value of a restricted identity function. (Contributed by NM, 19-May-2004.)
Assertion
Ref Expression
fvresi (𝐵𝐴 → (( I ↾ 𝐴)‘𝐵) = 𝐵)

Proof of Theorem fvresi
StepHypRef Expression
1 fvres 5651 . 2 (𝐵𝐴 → (( I ↾ 𝐴)‘𝐵) = ( I ‘𝐵))
2 fvi 5691 . 2 (𝐵𝐴 → ( I ‘𝐵) = 𝐵)
31, 2eqtrd 2262 1 (𝐵𝐴 → (( I ↾ 𝐴)‘𝐵) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200   I cid 4379  cres 4721  cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-res 4731  df-iota 5278  df-fun 5320  df-fv 5326
This theorem is referenced by:  f1ocnvfv1  5901  f1ocnvfv2  5902  fcof1  5907  fcofo  5908  isoid  5934  iordsmo  6443  omp1eomlem  7261  ctm  7276  ndxarg  13055  idmhm  13502  idghm  13796  dvid  15369  dvidre  15371
  Copyright terms: Public domain W3C validator