| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpidcl | Unicode version | ||
| Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpidcl.b |
|
| grpidcl.o |
|
| Ref | Expression |
|---|---|
| grpidcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 13257 |
. 2
| |
| 2 | grpidcl.b |
. . 3
| |
| 3 | grpidcl.o |
. . 3
| |
| 4 | 2, 3 | mndidcl 13180 |
. 2
|
| 5 | 1, 4 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-iota 5229 df-fun 5270 df-fn 5271 df-fv 5276 df-riota 5889 df-ov 5937 df-inn 9019 df-2 9077 df-ndx 12754 df-slot 12755 df-base 12757 df-plusg 12841 df-0g 13008 df-mgm 13106 df-sgrp 13152 df-mnd 13167 df-grp 13253 |
| This theorem is referenced by: grpbn0 13280 grprcan 13287 grpid 13289 isgrpid2 13290 grprinv 13301 grpidinv 13309 grpinvid 13310 grpressid 13311 grpidrcan 13315 grpidlcan 13316 grpidssd 13326 grpinvval2 13333 grpsubid1 13335 dfgrp3m 13349 grpsubpropd2 13355 imasgrp 13365 mulgcl 13393 mulgz 13404 subg0 13434 subg0cl 13436 issubg2m 13443 issubg4m 13447 grpissubg 13448 subgintm 13452 0subg 13453 nmzsubg 13464 0nsg 13468 triv1nsgd 13472 eqgid 13480 eqg0el 13483 qusgrp 13486 qus0 13489 ghmid 13503 ghmrn 13511 ghmpreima 13520 f1ghm0to0 13526 kerf1ghm 13528 rng0cl 13623 rnglz 13625 rngrz 13626 ring0cl 13701 ringlz 13723 ringrz 13724 lmod0vcl 13997 lmodfopnelem1 14004 rmodislmodlem 14030 rmodislmod 14031 islss3 14059 psr0cl 14361 psr0lid 14362 mplsubgfilemm 14378 |
| Copyright terms: Public domain | W3C validator |