![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grpidcl | Unicode version |
Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
grpidcl.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
grpidcl.o |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
grpidcl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 12889 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | grpidcl.b |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | grpidcl.o |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mndidcl 12836 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-cnex 7904 ax-resscn 7905 ax-1re 7907 ax-addrcl 7910 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-riota 5833 df-ov 5880 df-inn 8922 df-2 8980 df-ndx 12467 df-slot 12468 df-base 12470 df-plusg 12551 df-0g 12712 df-mgm 12780 df-sgrp 12813 df-mnd 12823 df-grp 12885 |
This theorem is referenced by: grpbn0 12910 grprcan 12915 grpid 12917 isgrpid2 12918 grprinv 12928 grpidinv 12934 grpinvid 12935 grpressid 12936 grpidrcan 12940 grpidlcan 12941 grpidssd 12951 grpinvval2 12958 grpsubid1 12960 dfgrp3m 12974 grpsubpropd2 12980 mulgcl 13005 mulgz 13016 subg0 13045 subg0cl 13047 issubg2m 13054 issubg4m 13058 grpissubg 13059 subgintm 13063 0subg 13064 nmzsubg 13075 0nsg 13079 triv1nsgd 13083 eqgid 13090 ring0cl 13209 ringlz 13227 ringrz 13228 lmod0vcl 13412 lmodfopnelem1 13419 rmodislmodlem 13445 rmodislmod 13446 islss3 13471 |
Copyright terms: Public domain | W3C validator |