ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidcl Unicode version

Theorem grpidcl 12909
Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
grpidcl.b  |-  B  =  ( Base `  G
)
grpidcl.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpidcl  |-  ( G  e.  Grp  ->  .0.  e.  B )

Proof of Theorem grpidcl
StepHypRef Expression
1 grpmnd 12889 . 2  |-  ( G  e.  Grp  ->  G  e.  Mnd )
2 grpidcl.b . . 3  |-  B  =  ( Base `  G
)
3 grpidcl.o . . 3  |-  .0.  =  ( 0g `  G )
42, 3mndidcl 12836 . 2  |-  ( G  e.  Mnd  ->  .0.  e.  B )
51, 4syl 14 1  |-  ( G  e.  Grp  ->  .0.  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   ` cfv 5218   Basecbs 12464   0gc0g 12710   Mndcmnd 12822   Grpcgrp 12882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-riota 5833  df-ov 5880  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885
This theorem is referenced by:  grpbn0  12910  grprcan  12915  grpid  12917  isgrpid2  12918  grprinv  12928  grpidinv  12934  grpinvid  12935  grpressid  12936  grpidrcan  12940  grpidlcan  12941  grpidssd  12951  grpinvval2  12958  grpsubid1  12960  dfgrp3m  12974  grpsubpropd2  12980  mulgcl  13005  mulgz  13016  subg0  13045  subg0cl  13047  issubg2m  13054  issubg4m  13058  grpissubg  13059  subgintm  13063  0subg  13064  nmzsubg  13075  0nsg  13079  triv1nsgd  13083  eqgid  13090  ring0cl  13209  ringlz  13227  ringrz  13228  lmod0vcl  13412  lmodfopnelem1  13419  rmodislmodlem  13445  rmodislmod  13446  islss3  13471
  Copyright terms: Public domain W3C validator