| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpidcl | Unicode version | ||
| Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpidcl.b |
|
| grpidcl.o |
|
| Ref | Expression |
|---|---|
| grpidcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 13535 |
. 2
| |
| 2 | grpidcl.b |
. . 3
| |
| 3 | grpidcl.o |
. . 3
| |
| 4 | 2, 3 | mndidcl 13458 |
. 2
|
| 5 | 1, 4 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-riota 5953 df-ov 6003 df-inn 9107 df-2 9165 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 |
| This theorem is referenced by: grpbn0 13558 grprcan 13565 grpid 13567 isgrpid2 13568 grprinv 13579 grpidinv 13587 grpinvid 13588 grpressid 13589 grpidrcan 13593 grpidlcan 13594 grpidssd 13604 grpinvval2 13611 grpsubid1 13613 dfgrp3m 13627 grpsubpropd2 13633 imasgrp 13643 mulgcl 13671 mulgz 13682 subg0 13712 subg0cl 13714 issubg2m 13721 issubg4m 13725 grpissubg 13726 subgintm 13730 0subg 13731 nmzsubg 13742 0nsg 13746 triv1nsgd 13750 eqgid 13758 eqg0el 13761 qusgrp 13764 qus0 13767 ghmid 13781 ghmrn 13789 ghmpreima 13798 f1ghm0to0 13804 kerf1ghm 13806 rng0cl 13901 rnglz 13903 rngrz 13904 ring0cl 13979 ringlz 14001 ringrz 14002 lmod0vcl 14275 lmodfopnelem1 14282 rmodislmodlem 14308 rmodislmod 14309 islss3 14337 psr0cl 14639 psr0lid 14640 mplsubgfilemm 14656 |
| Copyright terms: Public domain | W3C validator |