ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidcl Unicode version

Theorem grpidcl 13161
Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
grpidcl.b  |-  B  =  ( Base `  G
)
grpidcl.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grpidcl  |-  ( G  e.  Grp  ->  .0.  e.  B )

Proof of Theorem grpidcl
StepHypRef Expression
1 grpmnd 13139 . 2  |-  ( G  e.  Grp  ->  G  e.  Mnd )
2 grpidcl.b . . 3  |-  B  =  ( Base `  G
)
3 grpidcl.o . . 3  |-  .0.  =  ( 0g `  G )
42, 3mndidcl 13071 . 2  |-  ( G  e.  Mnd  ->  .0.  e.  B )
51, 4syl 14 1  |-  ( G  e.  Grp  ->  .0.  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   ` cfv 5258   Basecbs 12678   0gc0g 12927   Mndcmnd 13057   Grpcgrp 13132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135
This theorem is referenced by:  grpbn0  13162  grprcan  13169  grpid  13171  isgrpid2  13172  grprinv  13183  grpidinv  13191  grpinvid  13192  grpressid  13193  grpidrcan  13197  grpidlcan  13198  grpidssd  13208  grpinvval2  13215  grpsubid1  13217  dfgrp3m  13231  grpsubpropd2  13237  imasgrp  13241  mulgcl  13269  mulgz  13280  subg0  13310  subg0cl  13312  issubg2m  13319  issubg4m  13323  grpissubg  13324  subgintm  13328  0subg  13329  nmzsubg  13340  0nsg  13344  triv1nsgd  13348  eqgid  13356  eqg0el  13359  qusgrp  13362  qus0  13365  ghmid  13379  ghmrn  13387  ghmpreima  13396  f1ghm0to0  13402  kerf1ghm  13404  rng0cl  13499  rnglz  13501  rngrz  13502  ring0cl  13577  ringlz  13599  ringrz  13600  lmod0vcl  13873  lmodfopnelem1  13880  rmodislmodlem  13906  rmodislmod  13907  islss3  13935
  Copyright terms: Public domain W3C validator