| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpidcl | Unicode version | ||
| Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpidcl.b |
|
| grpidcl.o |
|
| Ref | Expression |
|---|---|
| grpidcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 13281 |
. 2
| |
| 2 | grpidcl.b |
. . 3
| |
| 3 | grpidcl.o |
. . 3
| |
| 4 | 2, 3 | mndidcl 13204 |
. 2
|
| 5 | 1, 4 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-riota 5898 df-ov 5946 df-inn 9036 df-2 9094 df-ndx 12777 df-slot 12778 df-base 12780 df-plusg 12864 df-0g 13032 df-mgm 13130 df-sgrp 13176 df-mnd 13191 df-grp 13277 |
| This theorem is referenced by: grpbn0 13304 grprcan 13311 grpid 13313 isgrpid2 13314 grprinv 13325 grpidinv 13333 grpinvid 13334 grpressid 13335 grpidrcan 13339 grpidlcan 13340 grpidssd 13350 grpinvval2 13357 grpsubid1 13359 dfgrp3m 13373 grpsubpropd2 13379 imasgrp 13389 mulgcl 13417 mulgz 13428 subg0 13458 subg0cl 13460 issubg2m 13467 issubg4m 13471 grpissubg 13472 subgintm 13476 0subg 13477 nmzsubg 13488 0nsg 13492 triv1nsgd 13496 eqgid 13504 eqg0el 13507 qusgrp 13510 qus0 13513 ghmid 13527 ghmrn 13535 ghmpreima 13544 f1ghm0to0 13550 kerf1ghm 13552 rng0cl 13647 rnglz 13649 rngrz 13650 ring0cl 13725 ringlz 13747 ringrz 13748 lmod0vcl 14021 lmodfopnelem1 14028 rmodislmodlem 14054 rmodislmod 14055 islss3 14083 psr0cl 14385 psr0lid 14386 mplsubgfilemm 14402 |
| Copyright terms: Public domain | W3C validator |