| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpidcl | Unicode version | ||
| Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| grpidcl.b |
|
| grpidcl.o |
|
| Ref | Expression |
|---|---|
| grpidcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 13414 |
. 2
| |
| 2 | grpidcl.b |
. . 3
| |
| 3 | grpidcl.o |
. . 3
| |
| 4 | 2, 3 | mndidcl 13337 |
. 2
|
| 5 | 1, 4 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-riota 5912 df-ov 5960 df-inn 9057 df-2 9115 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 |
| This theorem is referenced by: grpbn0 13437 grprcan 13444 grpid 13446 isgrpid2 13447 grprinv 13458 grpidinv 13466 grpinvid 13467 grpressid 13468 grpidrcan 13472 grpidlcan 13473 grpidssd 13483 grpinvval2 13490 grpsubid1 13492 dfgrp3m 13506 grpsubpropd2 13512 imasgrp 13522 mulgcl 13550 mulgz 13561 subg0 13591 subg0cl 13593 issubg2m 13600 issubg4m 13604 grpissubg 13605 subgintm 13609 0subg 13610 nmzsubg 13621 0nsg 13625 triv1nsgd 13629 eqgid 13637 eqg0el 13640 qusgrp 13643 qus0 13646 ghmid 13660 ghmrn 13668 ghmpreima 13677 f1ghm0to0 13683 kerf1ghm 13685 rng0cl 13780 rnglz 13782 rngrz 13783 ring0cl 13858 ringlz 13880 ringrz 13881 lmod0vcl 14154 lmodfopnelem1 14161 rmodislmodlem 14187 rmodislmod 14188 islss3 14216 psr0cl 14518 psr0lid 14519 mplsubgfilemm 14535 |
| Copyright terms: Public domain | W3C validator |