![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > grplid | Unicode version |
Description: The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.) |
Ref | Expression |
---|---|
grpbn0.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
grplid.p |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
grplid.o |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
grplid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 13079 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | grpbn0.b |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | grplid.p |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | grplid.o |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | mndlid 13016 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 1, 5 | sylan 283 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-cnex 7963 ax-resscn 7964 ax-1re 7966 ax-addrcl 7969 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-riota 5873 df-ov 5921 df-inn 8983 df-2 9041 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 |
This theorem is referenced by: grplidd 13105 grprcan 13109 grpid 13111 isgrpid2 13112 grprinv 13123 grpinvid1 13124 grpinvid2 13125 grpidinv2 13130 grpinvid 13132 grpressid 13133 grplcan 13134 grpasscan1 13135 grpidlcan 13138 grplmulf1o 13146 grpidssd 13148 grpinvadd 13150 grpinvval2 13155 grplactcnv 13174 imasgrp 13181 mulgaddcom 13216 mulgdirlem 13223 subg0 13250 issubg2m 13259 issubg4m 13263 isnsg3 13277 nmzsubg 13280 ssnmz 13281 eqger 13294 eqgid 13296 qusgrp 13302 qus0 13305 ghmid 13319 conjghm 13346 abladdsub4 13384 ablpncan2 13386 ablpnpcan 13390 ablnncan 13391 rnglz 13441 rngrz 13442 ringlz 13539 ringrz 13540 lmod0vlid 13814 lmod0vs 13817 |
Copyright terms: Public domain | W3C validator |