| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > grplid | Unicode version | ||
| Description: The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.) | 
| Ref | Expression | 
|---|---|
| grpbn0.b | 
 | 
| grplid.p | 
 | 
| grplid.o | 
 | 
| Ref | Expression | 
|---|---|
| grplid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | grpmnd 13139 | 
. 2
 | |
| 2 | grpbn0.b | 
. . 3
 | |
| 3 | grplid.p | 
. . 3
 | |
| 4 | grplid.o | 
. . 3
 | |
| 5 | 2, 3, 4 | mndlid 13076 | 
. 2
 | 
| 6 | 1, 5 | sylan 283 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-riota 5877 df-ov 5925 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 | 
| This theorem is referenced by: grplidd 13165 grprcan 13169 grpid 13171 isgrpid2 13172 grprinv 13183 grpinvid1 13184 grpinvid2 13185 grpidinv2 13190 grpinvid 13192 grpressid 13193 grplcan 13194 grpasscan1 13195 grpidlcan 13198 grplmulf1o 13206 grpidssd 13208 grpinvadd 13210 grpinvval2 13215 grplactcnv 13234 imasgrp 13241 mulgaddcom 13276 mulgdirlem 13283 subg0 13310 issubg2m 13319 issubg4m 13323 isnsg3 13337 nmzsubg 13340 ssnmz 13341 eqger 13354 eqgid 13356 qusgrp 13362 qus0 13365 ghmid 13379 conjghm 13406 abladdsub4 13444 ablpncan2 13446 ablpnpcan 13450 ablnncan 13451 rnglz 13501 rngrz 13502 ringlz 13599 ringrz 13600 lmod0vlid 13874 lmod0vs 13877 | 
| Copyright terms: Public domain | W3C validator |