ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplid Unicode version

Theorem grplid 13103
Description: The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.)
Hypotheses
Ref Expression
grpbn0.b  |-  B  =  ( Base `  G
)
grplid.p  |-  .+  =  ( +g  `  G )
grplid.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grplid  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  (  .0.  .+  X
)  =  X )

Proof of Theorem grplid
StepHypRef Expression
1 grpmnd 13079 . 2  |-  ( G  e.  Grp  ->  G  e.  Mnd )
2 grpbn0.b . . 3  |-  B  =  ( Base `  G
)
3 grplid.p . . 3  |-  .+  =  ( +g  `  G )
4 grplid.o . . 3  |-  .0.  =  ( 0g `  G )
52, 3, 4mndlid 13016 . 2  |-  ( ( G  e.  Mnd  /\  X  e.  B )  ->  (  .0.  .+  X
)  =  X )
61, 5sylan 283 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  (  .0.  .+  X
)  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   0gc0g 12867   Mndcmnd 12997   Grpcgrp 13072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075
This theorem is referenced by:  grplidd  13105  grprcan  13109  grpid  13111  isgrpid2  13112  grprinv  13123  grpinvid1  13124  grpinvid2  13125  grpidinv2  13130  grpinvid  13132  grpressid  13133  grplcan  13134  grpasscan1  13135  grpidlcan  13138  grplmulf1o  13146  grpidssd  13148  grpinvadd  13150  grpinvval2  13155  grplactcnv  13174  imasgrp  13181  mulgaddcom  13216  mulgdirlem  13223  subg0  13250  issubg2m  13259  issubg4m  13263  isnsg3  13277  nmzsubg  13280  ssnmz  13281  eqger  13294  eqgid  13296  qusgrp  13302  qus0  13305  ghmid  13319  conjghm  13346  abladdsub4  13384  ablpncan2  13386  ablpnpcan  13390  ablnncan  13391  rnglz  13441  rngrz  13442  ringlz  13539  ringrz  13540  lmod0vlid  13814  lmod0vs  13817
  Copyright terms: Public domain W3C validator