ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grplid Unicode version

Theorem grplid 13305
Description: The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.)
Hypotheses
Ref Expression
grpbn0.b  |-  B  =  ( Base `  G
)
grplid.p  |-  .+  =  ( +g  `  G )
grplid.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
grplid  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  (  .0.  .+  X
)  =  X )

Proof of Theorem grplid
StepHypRef Expression
1 grpmnd 13281 . 2  |-  ( G  e.  Grp  ->  G  e.  Mnd )
2 grpbn0.b . . 3  |-  B  =  ( Base `  G
)
3 grplid.p . . 3  |-  .+  =  ( +g  `  G )
4 grplid.o . . 3  |-  .0.  =  ( 0g `  G )
52, 3, 4mndlid 13209 . 2  |-  ( ( G  e.  Mnd  /\  X  e.  B )  ->  (  .0.  .+  X
)  =  X )
61, 5sylan 283 1  |-  ( ( G  e.  Grp  /\  X  e.  B )  ->  (  .0.  .+  X
)  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   ` cfv 5270  (class class class)co 5943   Basecbs 12774   +g cplusg 12851   0gc0g 13030   Mndcmnd 13190   Grpcgrp 13274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-inn 9036  df-2 9094  df-ndx 12777  df-slot 12778  df-base 12780  df-plusg 12864  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277
This theorem is referenced by:  grplidd  13307  grprcan  13311  grpid  13313  isgrpid2  13314  grprinv  13325  grpinvid1  13326  grpinvid2  13327  grpidinv2  13332  grpinvid  13334  grpressid  13335  grplcan  13336  grpasscan1  13337  grpidlcan  13340  grplmulf1o  13348  grpidssd  13350  grpinvadd  13352  grpinvval2  13357  grplactcnv  13376  imasgrp  13389  mulgaddcom  13424  mulgdirlem  13431  subg0  13458  issubg2m  13467  issubg4m  13471  isnsg3  13485  nmzsubg  13488  ssnmz  13489  eqger  13502  eqgid  13504  qusgrp  13510  qus0  13513  ghmid  13527  conjghm  13554  abladdsub4  13592  ablpncan2  13594  ablpnpcan  13598  ablnncan  13599  rnglz  13649  rngrz  13650  ringlz  13747  ringrz  13748  lmod0vlid  14022  lmod0vs  14025  psr0lid  14386
  Copyright terms: Public domain W3C validator