| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grplid | Unicode version | ||
| Description: The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.) |
| Ref | Expression |
|---|---|
| grpbn0.b |
|
| grplid.p |
|
| grplid.o |
|
| Ref | Expression |
|---|---|
| grplid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 13535 |
. 2
| |
| 2 | grpbn0.b |
. . 3
| |
| 3 | grplid.p |
. . 3
| |
| 4 | grplid.o |
. . 3
| |
| 5 | 2, 3, 4 | mndlid 13463 |
. 2
|
| 6 | 1, 5 | sylan 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-riota 5953 df-ov 6003 df-inn 9107 df-2 9165 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 |
| This theorem is referenced by: grplidd 13561 grprcan 13565 grpid 13567 isgrpid2 13568 grprinv 13579 grpinvid1 13580 grpinvid2 13581 grpidinv2 13586 grpinvid 13588 grpressid 13589 grplcan 13590 grpasscan1 13591 grpidlcan 13594 grplmulf1o 13602 grpidssd 13604 grpinvadd 13606 grpinvval2 13611 grplactcnv 13630 imasgrp 13643 mulgaddcom 13678 mulgdirlem 13685 subg0 13712 issubg2m 13721 issubg4m 13725 isnsg3 13739 nmzsubg 13742 ssnmz 13743 eqger 13756 eqgid 13758 qusgrp 13764 qus0 13767 ghmid 13781 conjghm 13808 abladdsub4 13846 ablpncan2 13848 ablpnpcan 13852 ablnncan 13853 rnglz 13903 rngrz 13904 ringlz 14001 ringrz 14002 lmod0vlid 14276 lmod0vs 14279 psr0lid 14640 |
| Copyright terms: Public domain | W3C validator |