ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfz2 Unicode version

Theorem elfz2 9748
Description: Membership in a finite set of sequential integers. We use the fact that an operation's value is empty outside of its domain to show  M  e.  ZZ and  N  e.  ZZ. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfz2  |-  ( K  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) ) )

Proof of Theorem elfz2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anass 396 . 2  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) ) )
2 df-3an 947 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ ) )
32anbi1i 451 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N
) ) )
4 df-fz 9742 . . . 4  |-  ...  =  ( x  e.  ZZ ,  y  e.  ZZ  |->  { z  e.  ZZ  |  ( x  <_ 
z  /\  z  <_  y ) } )
54elmpocl 5934 . . 3  |-  ( K  e.  ( M ... N )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
6 simpl 108 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) )  ->  ( M  e.  ZZ  /\  N  e.  ZZ ) )
7 elfz1 9746 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <-> 
( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) ) )
8 3anass 949 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N )  <->  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) )
9 ibar 297 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) ) ) )
108, 9syl5bb 191 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N
)  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) ) ) )
117, 10bitrd 187 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <-> 
( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) ) ) )
125, 6, 11pm5.21nii 676 . 2  |-  ( K  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  ( M  <_  K  /\  K  <_  N ) ) ) )
131, 3, 123bitr4ri 212 1  |-  ( K  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 945    e. wcel 1463   {crab 2395   class class class wbr 3897  (class class class)co 5740    <_ cle 7765   ZZcz 9008   ...cfz 9741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-setind 4420  ax-cnex 7675  ax-resscn 7676
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-iota 5056  df-fun 5093  df-fv 5099  df-ov 5743  df-oprab 5744  df-mpo 5745  df-neg 7900  df-z 9009  df-fz 9742
This theorem is referenced by:  elfz4  9750  elfzuzb  9751  uzsubsubfz  9778  fzmmmeqm  9789  fzpreddisj  9802  elfz1b  9821  fzp1nel  9835  elfz0ubfz0  9853  elfz0fzfz0  9854  fz0fzelfz0  9855  fz0fzdiffz0  9858  elfzmlbp  9860  fzind2  9967  iseqf1olemqcl  10210  iseqf1olemnab  10212  iseqf1olemab  10213  seq3f1olemqsumkj  10222  seq3f1olemqsumk  10223  summodclem2a  11101  fsum3  11107  fsum3cvg3  11116  fsumcl2lem  11118  fsumadd  11126  fsummulc2  11168
  Copyright terms: Public domain W3C validator