| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfz2 | Unicode version | ||
| Description: Membership in a finite
set of sequential integers. We use the fact that
an operation's value is empty outside of its domain to show |
| Ref | Expression |
|---|---|
| elfz2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 401 |
. 2
| |
| 2 | df-3an 983 |
. . 3
| |
| 3 | 2 | anbi1i 458 |
. 2
|
| 4 | df-fz 10131 |
. . . 4
| |
| 5 | 4 | elmpocl 6141 |
. . 3
|
| 6 | simpl 109 |
. . 3
| |
| 7 | elfz1 10135 |
. . . 4
| |
| 8 | 3anass 985 |
. . . . 5
| |
| 9 | ibar 301 |
. . . . 5
| |
| 10 | 8, 9 | bitrid 192 |
. . . 4
|
| 11 | 7, 10 | bitrd 188 |
. . 3
|
| 12 | 5, 6, 11 | pm5.21nii 706 |
. 2
|
| 13 | 1, 3, 12 | 3bitr4ri 213 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-neg 8246 df-z 9373 df-fz 10131 |
| This theorem is referenced by: elfzd 10138 elfz4 10140 elfzuzb 10141 uzsubsubfz 10169 fzmmmeqm 10180 fzpreddisj 10193 elfz1b 10212 fzp1nel 10226 elfz0ubfz0 10247 elfz0fzfz0 10248 fz0fzelfz0 10249 fz0fzdiffz0 10252 elfzmlbp 10254 fzind2 10368 iseqf1olemqcl 10644 iseqf1olemnab 10646 iseqf1olemab 10647 seq3f1olemqsumkj 10656 seq3f1olemqsumk 10657 summodclem2a 11692 fsum3 11698 fsum3cvg3 11707 fsumcl2lem 11709 fsumadd 11717 fsummulc2 11759 prodmodclem3 11886 prodmodclem2a 11887 fprodntrivap 11895 fprodeq0 11928 isprm5 12464 gausslemma2dlem3 15540 2lgslem1a1 15563 |
| Copyright terms: Public domain | W3C validator |