| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elfz2 | Unicode version | ||
| Description: Membership in a finite
set of sequential integers.  We use the fact that
       an operation's value is empty outside of its domain to show  | 
| Ref | Expression | 
|---|---|
| elfz2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | anass 401 | 
. 2
 | |
| 2 | df-3an 982 | 
. . 3
 | |
| 3 | 2 | anbi1i 458 | 
. 2
 | 
| 4 | df-fz 10084 | 
. . . 4
 | |
| 5 | 4 | elmpocl 6118 | 
. . 3
 | 
| 6 | simpl 109 | 
. . 3
 | |
| 7 | elfz1 10088 | 
. . . 4
 | |
| 8 | 3anass 984 | 
. . . . 5
 | |
| 9 | ibar 301 | 
. . . . 5
 | |
| 10 | 8, 9 | bitrid 192 | 
. . . 4
 | 
| 11 | 7, 10 | bitrd 188 | 
. . 3
 | 
| 12 | 5, 6, 11 | pm5.21nii 705 | 
. 2
 | 
| 13 | 1, 3, 12 | 3bitr4ri 213 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-neg 8200 df-z 9327 df-fz 10084 | 
| This theorem is referenced by: elfzd 10091 elfz4 10093 elfzuzb 10094 uzsubsubfz 10122 fzmmmeqm 10133 fzpreddisj 10146 elfz1b 10165 fzp1nel 10179 elfz0ubfz0 10200 elfz0fzfz0 10201 fz0fzelfz0 10202 fz0fzdiffz0 10205 elfzmlbp 10207 fzind2 10315 iseqf1olemqcl 10591 iseqf1olemnab 10593 iseqf1olemab 10594 seq3f1olemqsumkj 10603 seq3f1olemqsumk 10604 summodclem2a 11546 fsum3 11552 fsum3cvg3 11561 fsumcl2lem 11563 fsumadd 11571 fsummulc2 11613 prodmodclem3 11740 prodmodclem2a 11741 fprodntrivap 11749 fprodeq0 11782 isprm5 12310 gausslemma2dlem3 15304 2lgslem1a1 15327 | 
| Copyright terms: Public domain | W3C validator |