| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfz2 | Unicode version | ||
| Description: Membership in a finite
set of sequential integers. We use the fact that
an operation's value is empty outside of its domain to show |
| Ref | Expression |
|---|---|
| elfz2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 401 |
. 2
| |
| 2 | df-3an 982 |
. . 3
| |
| 3 | 2 | anbi1i 458 |
. 2
|
| 4 | df-fz 10101 |
. . . 4
| |
| 5 | 4 | elmpocl 6122 |
. . 3
|
| 6 | simpl 109 |
. . 3
| |
| 7 | elfz1 10105 |
. . . 4
| |
| 8 | 3anass 984 |
. . . . 5
| |
| 9 | ibar 301 |
. . . . 5
| |
| 10 | 8, 9 | bitrid 192 |
. . . 4
|
| 11 | 7, 10 | bitrd 188 |
. . 3
|
| 12 | 5, 6, 11 | pm5.21nii 705 |
. 2
|
| 13 | 1, 3, 12 | 3bitr4ri 213 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-neg 8217 df-z 9344 df-fz 10101 |
| This theorem is referenced by: elfzd 10108 elfz4 10110 elfzuzb 10111 uzsubsubfz 10139 fzmmmeqm 10150 fzpreddisj 10163 elfz1b 10182 fzp1nel 10196 elfz0ubfz0 10217 elfz0fzfz0 10218 fz0fzelfz0 10219 fz0fzdiffz0 10222 elfzmlbp 10224 fzind2 10332 iseqf1olemqcl 10608 iseqf1olemnab 10610 iseqf1olemab 10611 seq3f1olemqsumkj 10620 seq3f1olemqsumk 10621 summodclem2a 11563 fsum3 11569 fsum3cvg3 11578 fsumcl2lem 11580 fsumadd 11588 fsummulc2 11630 prodmodclem3 11757 prodmodclem2a 11758 fprodntrivap 11766 fprodeq0 11799 isprm5 12335 gausslemma2dlem3 15388 2lgslem1a1 15411 |
| Copyright terms: Public domain | W3C validator |