| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfz2 | Unicode version | ||
| Description: Membership in a finite
set of sequential integers. We use the fact that
an operation's value is empty outside of its domain to show |
| Ref | Expression |
|---|---|
| elfz2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 401 |
. 2
| |
| 2 | df-3an 983 |
. . 3
| |
| 3 | 2 | anbi1i 458 |
. 2
|
| 4 | df-fz 10133 |
. . . 4
| |
| 5 | 4 | elmpocl 6143 |
. . 3
|
| 6 | simpl 109 |
. . 3
| |
| 7 | elfz1 10137 |
. . . 4
| |
| 8 | 3anass 985 |
. . . . 5
| |
| 9 | ibar 301 |
. . . . 5
| |
| 10 | 8, 9 | bitrid 192 |
. . . 4
|
| 11 | 7, 10 | bitrd 188 |
. . 3
|
| 12 | 5, 6, 11 | pm5.21nii 706 |
. 2
|
| 13 | 1, 3, 12 | 3bitr4ri 213 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-neg 8248 df-z 9375 df-fz 10133 |
| This theorem is referenced by: elfzd 10140 elfz4 10142 elfzuzb 10143 uzsubsubfz 10171 fzmmmeqm 10182 fzpreddisj 10195 elfz1b 10214 fzp1nel 10228 elfz0ubfz0 10249 elfz0fzfz0 10250 fz0fzelfz0 10251 fz0fzdiffz0 10254 elfzmlbp 10256 fzind2 10370 iseqf1olemqcl 10646 iseqf1olemnab 10648 iseqf1olemab 10649 seq3f1olemqsumkj 10658 seq3f1olemqsumk 10659 summodclem2a 11725 fsum3 11731 fsum3cvg3 11740 fsumcl2lem 11742 fsumadd 11750 fsummulc2 11792 prodmodclem3 11919 prodmodclem2a 11920 fprodntrivap 11928 fprodeq0 11961 isprm5 12497 gausslemma2dlem3 15573 2lgslem1a1 15596 |
| Copyright terms: Public domain | W3C validator |