| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfz2 | Unicode version | ||
| Description: Membership in a finite
set of sequential integers. We use the fact that
an operation's value is empty outside of its domain to show |
| Ref | Expression |
|---|---|
| elfz2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 401 |
. 2
| |
| 2 | df-3an 1004 |
. . 3
| |
| 3 | 2 | anbi1i 458 |
. 2
|
| 4 | df-fz 10205 |
. . . 4
| |
| 5 | 4 | elmpocl 6200 |
. . 3
|
| 6 | simpl 109 |
. . 3
| |
| 7 | elfz1 10209 |
. . . 4
| |
| 8 | 3anass 1006 |
. . . . 5
| |
| 9 | ibar 301 |
. . . . 5
| |
| 10 | 8, 9 | bitrid 192 |
. . . 4
|
| 11 | 7, 10 | bitrd 188 |
. . 3
|
| 12 | 5, 6, 11 | pm5.21nii 709 |
. 2
|
| 13 | 1, 3, 12 | 3bitr4ri 213 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-neg 8320 df-z 9447 df-fz 10205 |
| This theorem is referenced by: elfzd 10212 elfz4 10214 elfzuzb 10215 uzsubsubfz 10243 fzmmmeqm 10254 fzpreddisj 10267 elfz1b 10286 fzp1nel 10300 elfz0ubfz0 10321 elfz0fzfz0 10322 fz0fzelfz0 10323 fz0fzdiffz0 10326 elfzmlbp 10328 fzind2 10445 iseqf1olemqcl 10721 iseqf1olemnab 10723 iseqf1olemab 10724 seq3f1olemqsumkj 10733 seq3f1olemqsumk 10734 swrdswrdlem 11236 swrdswrd 11237 pfxccatin12lem2a 11259 pfxccatin12lem1 11260 swrdccatin2 11261 pfxccatin12lem2 11263 pfxccat3 11266 summodclem2a 11892 fsum3 11898 fsum3cvg3 11907 fsumcl2lem 11909 fsumadd 11917 fsummulc2 11959 prodmodclem3 12086 prodmodclem2a 12087 fprodntrivap 12095 fprodeq0 12128 isprm5 12664 gausslemma2dlem3 15742 2lgslem1a1 15765 |
| Copyright terms: Public domain | W3C validator |