Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfz2 | Unicode version |
Description: Membership in a finite set of sequential integers. We use the fact that an operation's value is empty outside of its domain to show and . (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfz2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 399 | . 2 | |
2 | df-3an 970 | . . 3 | |
3 | 2 | anbi1i 454 | . 2 |
4 | df-fz 9945 | . . . 4 | |
5 | 4 | elmpocl 6036 | . . 3 |
6 | simpl 108 | . . 3 | |
7 | elfz1 9949 | . . . 4 | |
8 | 3anass 972 | . . . . 5 | |
9 | ibar 299 | . . . . 5 | |
10 | 8, 9 | syl5bb 191 | . . . 4 |
11 | 7, 10 | bitrd 187 | . . 3 |
12 | 5, 6, 11 | pm5.21nii 694 | . 2 |
13 | 1, 3, 12 | 3bitr4ri 212 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 w3a 968 wcel 2136 crab 2448 class class class wbr 3982 (class class class)co 5842 cle 7934 cz 9191 cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-neg 8072 df-z 9192 df-fz 9945 |
This theorem is referenced by: elfz4 9953 elfzuzb 9954 uzsubsubfz 9982 fzmmmeqm 9993 fzpreddisj 10006 elfz1b 10025 fzp1nel 10039 elfz0ubfz0 10060 elfz0fzfz0 10061 fz0fzelfz0 10062 fz0fzdiffz0 10065 elfzmlbp 10067 fzind2 10174 iseqf1olemqcl 10421 iseqf1olemnab 10423 iseqf1olemab 10424 seq3f1olemqsumkj 10433 seq3f1olemqsumk 10434 summodclem2a 11322 fsum3 11328 fsum3cvg3 11337 fsumcl2lem 11339 fsumadd 11347 fsummulc2 11389 prodmodclem3 11516 prodmodclem2a 11517 fprodntrivap 11525 fprodeq0 11558 isprm5 12074 |
Copyright terms: Public domain | W3C validator |