| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfz2 | Unicode version | ||
| Description: Membership in a finite
set of sequential integers. We use the fact that
an operation's value is empty outside of its domain to show |
| Ref | Expression |
|---|---|
| elfz2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass 401 |
. 2
| |
| 2 | df-3an 983 |
. . 3
| |
| 3 | 2 | anbi1i 458 |
. 2
|
| 4 | df-fz 10166 |
. . . 4
| |
| 5 | 4 | elmpocl 6164 |
. . 3
|
| 6 | simpl 109 |
. . 3
| |
| 7 | elfz1 10170 |
. . . 4
| |
| 8 | 3anass 985 |
. . . . 5
| |
| 9 | ibar 301 |
. . . . 5
| |
| 10 | 8, 9 | bitrid 192 |
. . . 4
|
| 11 | 7, 10 | bitrd 188 |
. . 3
|
| 12 | 5, 6, 11 | pm5.21nii 706 |
. 2
|
| 13 | 1, 3, 12 | 3bitr4ri 213 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-neg 8281 df-z 9408 df-fz 10166 |
| This theorem is referenced by: elfzd 10173 elfz4 10175 elfzuzb 10176 uzsubsubfz 10204 fzmmmeqm 10215 fzpreddisj 10228 elfz1b 10247 fzp1nel 10261 elfz0ubfz0 10282 elfz0fzfz0 10283 fz0fzelfz0 10284 fz0fzdiffz0 10287 elfzmlbp 10289 fzind2 10405 iseqf1olemqcl 10681 iseqf1olemnab 10683 iseqf1olemab 10684 seq3f1olemqsumkj 10693 seq3f1olemqsumk 10694 swrdswrdlem 11195 swrdswrd 11196 pfxccatin12lem2a 11218 pfxccatin12lem1 11219 swrdccatin2 11220 pfxccatin12lem2 11222 pfxccat3 11225 summodclem2a 11807 fsum3 11813 fsum3cvg3 11822 fsumcl2lem 11824 fsumadd 11832 fsummulc2 11874 prodmodclem3 12001 prodmodclem2a 12002 fprodntrivap 12010 fprodeq0 12043 isprm5 12579 gausslemma2dlem3 15655 2lgslem1a1 15678 |
| Copyright terms: Public domain | W3C validator |