ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccssioo2 Unicode version

Theorem iccssioo2 9570
Description: Condition for a closed interval to be a subset of an open interval. (Contributed by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
iccssioo2  |-  ( ( C  e.  ( A (,) B )  /\  D  e.  ( A (,) B ) )  -> 
( C [,] D
)  C_  ( A (,) B ) )

Proof of Theorem iccssioo2
StepHypRef Expression
1 eliooxr 9551 . . 3  |-  ( C  e.  ( A (,) B )  ->  ( A  e.  RR*  /\  B  e.  RR* ) )
21adantr 272 . 2  |-  ( ( C  e.  ( A (,) B )  /\  D  e.  ( A (,) B ) )  -> 
( A  e.  RR*  /\  B  e.  RR* )
)
3 eliooord 9552 . . . 4  |-  ( C  e.  ( A (,) B )  ->  ( A  <  C  /\  C  <  B ) )
43adantr 272 . . 3  |-  ( ( C  e.  ( A (,) B )  /\  D  e.  ( A (,) B ) )  -> 
( A  <  C  /\  C  <  B ) )
54simpld 111 . 2  |-  ( ( C  e.  ( A (,) B )  /\  D  e.  ( A (,) B ) )  ->  A  <  C )
6 eliooord 9552 . . . 4  |-  ( D  e.  ( A (,) B )  ->  ( A  <  D  /\  D  <  B ) )
76adantl 273 . . 3  |-  ( ( C  e.  ( A (,) B )  /\  D  e.  ( A (,) B ) )  -> 
( A  <  D  /\  D  <  B ) )
87simprd 113 . 2  |-  ( ( C  e.  ( A (,) B )  /\  D  e.  ( A (,) B ) )  ->  D  <  B )
9 iccssioo 9566 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <  C  /\  D  <  B ) )  ->  ( C [,] D )  C_  ( A (,) B ) )
102, 5, 8, 9syl12anc 1182 1  |-  ( ( C  e.  ( A (,) B )  /\  D  e.  ( A (,) B ) )  -> 
( C [,] D
)  C_  ( A (,) B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1448    C_ wss 3021   class class class wbr 3875  (class class class)co 5706   RR*cxr 7671    < clt 7672   (,)cioo 9512   [,]cicc 9515
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609
This theorem depends on definitions:  df-bi 116  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-id 4153  df-po 4156  df-iso 4157  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-ioo 9516  df-icc 9519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator