ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccssico Unicode version

Theorem iccssico 9751
Description: Condition for a closed interval to be a subset of a half-open interval. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
iccssico  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <_  C  /\  D  <  B ) )  ->  ( C [,] D )  C_  ( A [,) B ) )

Proof of Theorem iccssico
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ico 9700 . 2  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
2 df-icc 9701 . 2  |-  [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) } )
3 xrletr 9614 . 2  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  w  e. 
RR* )  ->  (
( A  <_  C  /\  C  <_  w )  ->  A  <_  w
) )
4 xrlelttr 9612 . 2  |-  ( ( w  e.  RR*  /\  D  e.  RR*  /\  B  e. 
RR* )  ->  (
( w  <_  D  /\  D  <  B )  ->  w  <  B
) )
51, 2, 3, 4ixxss12 9712 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <_  C  /\  D  <  B ) )  ->  ( C [,] D )  C_  ( A [,) B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1480    C_ wss 3071   class class class wbr 3932  (class class class)co 5777   RR*cxr 7818    < clt 7819    <_ cle 7820   [,)cico 9696   [,]cicc 9697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4049  ax-pow 4101  ax-pr 4134  ax-un 4358  ax-setind 4455  ax-cnex 7730  ax-resscn 7731  ax-pre-ltirr 7751  ax-pre-ltwlin 7752  ax-pre-lttrn 7753
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3740  df-br 3933  df-opab 3993  df-id 4218  df-po 4221  df-iso 4222  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-iota 5091  df-fun 5128  df-fv 5134  df-ov 5780  df-oprab 5781  df-mpo 5782  df-pnf 7821  df-mnf 7822  df-xr 7823  df-ltxr 7824  df-le 7825  df-ico 9700  df-icc 9701
This theorem is referenced by:  iccssico2  9753
  Copyright terms: Public domain W3C validator