ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmb1mgm1 Unicode version

Theorem mgmb1mgm1 13315
Description: The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.)
Hypotheses
Ref Expression
mgmb1mgm1.b  |-  B  =  ( Base `  M
)
mgmb1mgm1.p  |-  .+  =  ( +g  `  M )
Assertion
Ref Expression
mgmb1mgm1  |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  ( B  =  { Z } 
<-> 
.+  =  { <. <. Z ,  Z >. ,  Z >. } ) )

Proof of Theorem mgmb1mgm1
StepHypRef Expression
1 mgmb1mgm1.b . . . . . 6  |-  B  =  ( Base `  M
)
2 eqid 2207 . . . . . 6  |-  ( +f `  M )  =  ( +f `  M )
31, 2mgmplusf 13313 . . . . 5  |-  ( M  e. Mgm  ->  ( +f `  M ) : ( B  X.  B ) --> B )
43adantr 276 . . . 4  |-  ( ( M  e. Mgm  /\  .+  Fn  ( B  X.  B
) )  ->  ( +f `  M
) : ( B  X.  B ) --> B )
5 mgmb1mgm1.p . . . . . 6  |-  .+  =  ( +g  `  M )
61, 5, 2plusfeqg 13311 . . . . 5  |-  ( ( M  e. Mgm  /\  .+  Fn  ( B  X.  B
) )  ->  ( +f `  M
)  =  .+  )
76feq1d 5432 . . . 4  |-  ( ( M  e. Mgm  /\  .+  Fn  ( B  X.  B
) )  ->  (
( +f `  M ) : ( B  X.  B ) --> B  <->  .+  : ( B  X.  B ) --> B ) )
84, 7mpbid 147 . . 3  |-  ( ( M  e. Mgm  /\  .+  Fn  ( B  X.  B
) )  ->  .+  :
( B  X.  B
) --> B )
983adant2 1019 . 2  |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  .+  :
( B  X.  B
) --> B )
10 simp2 1001 . 2  |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  Z  e.  B )
11 intopsn 13314 . 2  |-  ( ( 
.+  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  =  { Z }  <->  .+  =  { <. <. Z ,  Z >. ,  Z >. } ) )
129, 10, 11syl2anc 411 1  |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  ( B  =  { Z } 
<-> 
.+  =  { <. <. Z ,  Z >. ,  Z >. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   {csn 3643   <.cop 3646    X. cxp 4691    Fn wfn 5285   -->wf 5286   ` cfv 5290   Basecbs 12947   +g cplusg 13024   +fcplusf 13300  Mgmcmgm 13301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-plusf 13302  df-mgm 13303
This theorem is referenced by:  srg1zr  13864
  Copyright terms: Public domain W3C validator