ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmb1mgm1 Unicode version

Theorem mgmb1mgm1 13233
Description: The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.)
Hypotheses
Ref Expression
mgmb1mgm1.b  |-  B  =  ( Base `  M
)
mgmb1mgm1.p  |-  .+  =  ( +g  `  M )
Assertion
Ref Expression
mgmb1mgm1  |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  ( B  =  { Z } 
<-> 
.+  =  { <. <. Z ,  Z >. ,  Z >. } ) )

Proof of Theorem mgmb1mgm1
StepHypRef Expression
1 mgmb1mgm1.b . . . . . 6  |-  B  =  ( Base `  M
)
2 eqid 2205 . . . . . 6  |-  ( +f `  M )  =  ( +f `  M )
31, 2mgmplusf 13231 . . . . 5  |-  ( M  e. Mgm  ->  ( +f `  M ) : ( B  X.  B ) --> B )
43adantr 276 . . . 4  |-  ( ( M  e. Mgm  /\  .+  Fn  ( B  X.  B
) )  ->  ( +f `  M
) : ( B  X.  B ) --> B )
5 mgmb1mgm1.p . . . . . 6  |-  .+  =  ( +g  `  M )
61, 5, 2plusfeqg 13229 . . . . 5  |-  ( ( M  e. Mgm  /\  .+  Fn  ( B  X.  B
) )  ->  ( +f `  M
)  =  .+  )
76feq1d 5414 . . . 4  |-  ( ( M  e. Mgm  /\  .+  Fn  ( B  X.  B
) )  ->  (
( +f `  M ) : ( B  X.  B ) --> B  <->  .+  : ( B  X.  B ) --> B ) )
84, 7mpbid 147 . . 3  |-  ( ( M  e. Mgm  /\  .+  Fn  ( B  X.  B
) )  ->  .+  :
( B  X.  B
) --> B )
983adant2 1019 . 2  |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  .+  :
( B  X.  B
) --> B )
10 simp2 1001 . 2  |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  Z  e.  B )
11 intopsn 13232 . 2  |-  ( ( 
.+  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  =  { Z }  <->  .+  =  { <. <. Z ,  Z >. ,  Z >. } ) )
129, 10, 11syl2anc 411 1  |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  ( B  =  { Z } 
<-> 
.+  =  { <. <. Z ,  Z >. ,  Z >. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   {csn 3633   <.cop 3636    X. cxp 4674    Fn wfn 5267   -->wf 5268   ` cfv 5272   Basecbs 12865   +g cplusg 12942   +fcplusf 13218  Mgmcmgm 13219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-inn 9039  df-2 9097  df-ndx 12868  df-slot 12869  df-base 12871  df-plusg 12955  df-plusf 13220  df-mgm 13221
This theorem is referenced by:  srg1zr  13782
  Copyright terms: Public domain W3C validator