ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmb1mgm1 Unicode version

Theorem mgmb1mgm1 12622
Description: The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.)
Hypotheses
Ref Expression
mgmb1mgm1.b  |-  B  =  ( Base `  M
)
mgmb1mgm1.p  |-  .+  =  ( +g  `  M )
Assertion
Ref Expression
mgmb1mgm1  |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  ( B  =  { Z } 
<-> 
.+  =  { <. <. Z ,  Z >. ,  Z >. } ) )

Proof of Theorem mgmb1mgm1
StepHypRef Expression
1 mgmb1mgm1.b . . . . . 6  |-  B  =  ( Base `  M
)
2 eqid 2170 . . . . . 6  |-  ( +f `  M )  =  ( +f `  M )
31, 2mgmplusf 12620 . . . . 5  |-  ( M  e. Mgm  ->  ( +f `  M ) : ( B  X.  B ) --> B )
43adantr 274 . . . 4  |-  ( ( M  e. Mgm  /\  .+  Fn  ( B  X.  B
) )  ->  ( +f `  M
) : ( B  X.  B ) --> B )
5 mgmb1mgm1.p . . . . . 6  |-  .+  =  ( +g  `  M )
61, 5, 2plusfeqg 12618 . . . . 5  |-  ( ( M  e. Mgm  /\  .+  Fn  ( B  X.  B
) )  ->  ( +f `  M
)  =  .+  )
76feq1d 5334 . . . 4  |-  ( ( M  e. Mgm  /\  .+  Fn  ( B  X.  B
) )  ->  (
( +f `  M ) : ( B  X.  B ) --> B  <->  .+  : ( B  X.  B ) --> B ) )
84, 7mpbid 146 . . 3  |-  ( ( M  e. Mgm  /\  .+  Fn  ( B  X.  B
) )  ->  .+  :
( B  X.  B
) --> B )
983adant2 1011 . 2  |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  .+  :
( B  X.  B
) --> B )
10 simp2 993 . 2  |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  Z  e.  B )
11 intopsn 12621 . 2  |-  ( ( 
.+  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  =  { Z }  <->  .+  =  { <. <. Z ,  Z >. ,  Z >. } ) )
129, 10, 11syl2anc 409 1  |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  ( B  =  { Z } 
<-> 
.+  =  { <. <. Z ,  Z >. ,  Z >. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   {csn 3583   <.cop 3586    X. cxp 4609    Fn wfn 5193   -->wf 5194   ` cfv 5198   Basecbs 12416   +g cplusg 12480   +fcplusf 12607  Mgmcmgm 12608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-plusf 12609  df-mgm 12610
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator