ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmb1mgm1 Unicode version

Theorem mgmb1mgm1 13011
Description: The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.)
Hypotheses
Ref Expression
mgmb1mgm1.b  |-  B  =  ( Base `  M
)
mgmb1mgm1.p  |-  .+  =  ( +g  `  M )
Assertion
Ref Expression
mgmb1mgm1  |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  ( B  =  { Z } 
<-> 
.+  =  { <. <. Z ,  Z >. ,  Z >. } ) )

Proof of Theorem mgmb1mgm1
StepHypRef Expression
1 mgmb1mgm1.b . . . . . 6  |-  B  =  ( Base `  M
)
2 eqid 2196 . . . . . 6  |-  ( +f `  M )  =  ( +f `  M )
31, 2mgmplusf 13009 . . . . 5  |-  ( M  e. Mgm  ->  ( +f `  M ) : ( B  X.  B ) --> B )
43adantr 276 . . . 4  |-  ( ( M  e. Mgm  /\  .+  Fn  ( B  X.  B
) )  ->  ( +f `  M
) : ( B  X.  B ) --> B )
5 mgmb1mgm1.p . . . . . 6  |-  .+  =  ( +g  `  M )
61, 5, 2plusfeqg 13007 . . . . 5  |-  ( ( M  e. Mgm  /\  .+  Fn  ( B  X.  B
) )  ->  ( +f `  M
)  =  .+  )
76feq1d 5394 . . . 4  |-  ( ( M  e. Mgm  /\  .+  Fn  ( B  X.  B
) )  ->  (
( +f `  M ) : ( B  X.  B ) --> B  <->  .+  : ( B  X.  B ) --> B ) )
84, 7mpbid 147 . . 3  |-  ( ( M  e. Mgm  /\  .+  Fn  ( B  X.  B
) )  ->  .+  :
( B  X.  B
) --> B )
983adant2 1018 . 2  |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  .+  :
( B  X.  B
) --> B )
10 simp2 1000 . 2  |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  Z  e.  B )
11 intopsn 13010 . 2  |-  ( ( 
.+  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  =  { Z }  <->  .+  =  { <. <. Z ,  Z >. ,  Z >. } ) )
129, 10, 11syl2anc 411 1  |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  ( B  =  { Z } 
<-> 
.+  =  { <. <. Z ,  Z >. ,  Z >. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   {csn 3622   <.cop 3625    X. cxp 4661    Fn wfn 5253   -->wf 5254   ` cfv 5258   Basecbs 12678   +g cplusg 12755   +fcplusf 12996  Mgmcmgm 12997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-plusf 12998  df-mgm 12999
This theorem is referenced by:  srg1zr  13543
  Copyright terms: Public domain W3C validator