ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmb1mgm1 Unicode version

Theorem mgmb1mgm1 12792
Description: The only magma with a base set consisting of one element is the trivial magma (at least if its operation is an internal binary operation). (Contributed by AV, 23-Jan-2020.) (Revised by AV, 7-Feb-2020.)
Hypotheses
Ref Expression
mgmb1mgm1.b  |-  B  =  ( Base `  M
)
mgmb1mgm1.p  |-  .+  =  ( +g  `  M )
Assertion
Ref Expression
mgmb1mgm1  |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  ( B  =  { Z } 
<-> 
.+  =  { <. <. Z ,  Z >. ,  Z >. } ) )

Proof of Theorem mgmb1mgm1
StepHypRef Expression
1 mgmb1mgm1.b . . . . . 6  |-  B  =  ( Base `  M
)
2 eqid 2177 . . . . . 6  |-  ( +f `  M )  =  ( +f `  M )
31, 2mgmplusf 12790 . . . . 5  |-  ( M  e. Mgm  ->  ( +f `  M ) : ( B  X.  B ) --> B )
43adantr 276 . . . 4  |-  ( ( M  e. Mgm  /\  .+  Fn  ( B  X.  B
) )  ->  ( +f `  M
) : ( B  X.  B ) --> B )
5 mgmb1mgm1.p . . . . . 6  |-  .+  =  ( +g  `  M )
61, 5, 2plusfeqg 12788 . . . . 5  |-  ( ( M  e. Mgm  /\  .+  Fn  ( B  X.  B
) )  ->  ( +f `  M
)  =  .+  )
76feq1d 5354 . . . 4  |-  ( ( M  e. Mgm  /\  .+  Fn  ( B  X.  B
) )  ->  (
( +f `  M ) : ( B  X.  B ) --> B  <->  .+  : ( B  X.  B ) --> B ) )
84, 7mpbid 147 . . 3  |-  ( ( M  e. Mgm  /\  .+  Fn  ( B  X.  B
) )  ->  .+  :
( B  X.  B
) --> B )
983adant2 1016 . 2  |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  .+  :
( B  X.  B
) --> B )
10 simp2 998 . 2  |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  Z  e.  B )
11 intopsn 12791 . 2  |-  ( ( 
.+  : ( B  X.  B ) --> B  /\  Z  e.  B
)  ->  ( B  =  { Z }  <->  .+  =  { <. <. Z ,  Z >. ,  Z >. } ) )
129, 10, 11syl2anc 411 1  |-  ( ( M  e. Mgm  /\  Z  e.  B  /\  .+  Fn  ( B  X.  B
) )  ->  ( B  =  { Z } 
<-> 
.+  =  { <. <. Z ,  Z >. ,  Z >. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   {csn 3594   <.cop 3597    X. cxp 4626    Fn wfn 5213   -->wf 5214   ` cfv 5218   Basecbs 12464   +g cplusg 12538   +fcplusf 12777  Mgmcmgm 12778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-plusf 12779  df-mgm 12780
This theorem is referenced by:  srg1zr  13175
  Copyright terms: Public domain W3C validator