ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmplusf Unicode version

Theorem mgmplusf 13009
Description: The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.)
Hypotheses
Ref Expression
mgmplusf.1  |-  B  =  ( Base `  M
)
mgmplusf.2  |-  .+^  =  ( +f `  M
)
Assertion
Ref Expression
mgmplusf  |-  ( M  e. Mgm  ->  .+^  : ( B  X.  B ) --> B )

Proof of Theorem mgmplusf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmplusf.1 . . . . . 6  |-  B  =  ( Base `  M
)
2 eqid 2196 . . . . . 6  |-  ( +g  `  M )  =  ( +g  `  M )
31, 2mgmcl 13002 . . . . 5  |-  ( ( M  e. Mgm  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( +g  `  M
) y )  e.  B )
433expb 1206 . . . 4  |-  ( ( M  e. Mgm  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( +g  `  M ) y )  e.  B
)
54ralrimivva 2579 . . 3  |-  ( M  e. Mgm  ->  A. x  e.  B  A. y  e.  B  ( x ( +g  `  M ) y )  e.  B )
6 eqid 2196 . . . 4  |-  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  M
) y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  M ) y ) )
76fmpo 6259 . . 3  |-  ( A. x  e.  B  A. y  e.  B  (
x ( +g  `  M
) y )  e.  B  <->  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  M ) y ) ) : ( B  X.  B
) --> B )
85, 7sylib 122 . 2  |-  ( M  e. Mgm  ->  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  M ) y ) ) : ( B  X.  B
) --> B )
9 mgmplusf.2 . . . 4  |-  .+^  =  ( +f `  M
)
101, 2, 9plusffvalg 13005 . . 3  |-  ( M  e. Mgm  ->  .+^  =  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  M
) y ) ) )
1110feq1d 5394 . 2  |-  ( M  e. Mgm  ->  (  .+^  : ( B  X.  B ) --> B  <->  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  M ) y ) ) : ( B  X.  B
) --> B ) )
128, 11mpbird 167 1  |-  ( M  e. Mgm  ->  .+^  : ( B  X.  B ) --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   A.wral 2475    X. cxp 4661   -->wf 5254   ` cfv 5258  (class class class)co 5922    e. cmpo 5924   Basecbs 12678   +g cplusg 12755   +fcplusf 12996  Mgmcmgm 12997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-plusf 12998  df-mgm 12999
This theorem is referenced by:  mgmb1mgm1  13011  mndplusf  13074
  Copyright terms: Public domain W3C validator