ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmplusf Unicode version

Theorem mgmplusf 13399
Description: The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.)
Hypotheses
Ref Expression
mgmplusf.1  |-  B  =  ( Base `  M
)
mgmplusf.2  |-  .+^  =  ( +f `  M
)
Assertion
Ref Expression
mgmplusf  |-  ( M  e. Mgm  ->  .+^  : ( B  X.  B ) --> B )

Proof of Theorem mgmplusf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmplusf.1 . . . . . 6  |-  B  =  ( Base `  M
)
2 eqid 2229 . . . . . 6  |-  ( +g  `  M )  =  ( +g  `  M )
31, 2mgmcl 13392 . . . . 5  |-  ( ( M  e. Mgm  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( +g  `  M
) y )  e.  B )
433expb 1228 . . . 4  |-  ( ( M  e. Mgm  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( +g  `  M ) y )  e.  B
)
54ralrimivva 2612 . . 3  |-  ( M  e. Mgm  ->  A. x  e.  B  A. y  e.  B  ( x ( +g  `  M ) y )  e.  B )
6 eqid 2229 . . . 4  |-  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  M
) y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  M ) y ) )
76fmpo 6347 . . 3  |-  ( A. x  e.  B  A. y  e.  B  (
x ( +g  `  M
) y )  e.  B  <->  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  M ) y ) ) : ( B  X.  B
) --> B )
85, 7sylib 122 . 2  |-  ( M  e. Mgm  ->  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  M ) y ) ) : ( B  X.  B
) --> B )
9 mgmplusf.2 . . . 4  |-  .+^  =  ( +f `  M
)
101, 2, 9plusffvalg 13395 . . 3  |-  ( M  e. Mgm  ->  .+^  =  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  M
) y ) ) )
1110feq1d 5460 . 2  |-  ( M  e. Mgm  ->  (  .+^  : ( B  X.  B ) --> B  <->  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  M ) y ) ) : ( B  X.  B
) --> B ) )
128, 11mpbird 167 1  |-  ( M  e. Mgm  ->  .+^  : ( B  X.  B ) --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   A.wral 2508    X. cxp 4717   -->wf 5314   ` cfv 5318  (class class class)co 6001    e. cmpo 6003   Basecbs 13032   +g cplusg 13110   +fcplusf 13386  Mgmcmgm 13387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-plusf 13388  df-mgm 13389
This theorem is referenced by:  mgmb1mgm1  13401  mndplusf  13466
  Copyright terms: Public domain W3C validator