ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mgmplusf Unicode version

Theorem mgmplusf 12779
Description: The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.)
Hypotheses
Ref Expression
mgmplusf.1  |-  B  =  ( Base `  M
)
mgmplusf.2  |-  .+^  =  ( +f `  M
)
Assertion
Ref Expression
mgmplusf  |-  ( M  e. Mgm  ->  .+^  : ( B  X.  B ) --> B )

Proof of Theorem mgmplusf
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mgmplusf.1 . . . . . 6  |-  B  =  ( Base `  M
)
2 eqid 2177 . . . . . 6  |-  ( +g  `  M )  =  ( +g  `  M )
31, 2mgmcl 12772 . . . . 5  |-  ( ( M  e. Mgm  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( +g  `  M
) y )  e.  B )
433expb 1204 . . . 4  |-  ( ( M  e. Mgm  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( +g  `  M ) y )  e.  B
)
54ralrimivva 2559 . . 3  |-  ( M  e. Mgm  ->  A. x  e.  B  A. y  e.  B  ( x ( +g  `  M ) y )  e.  B )
6 eqid 2177 . . . 4  |-  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  M
) y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  M ) y ) )
76fmpo 6201 . . 3  |-  ( A. x  e.  B  A. y  e.  B  (
x ( +g  `  M
) y )  e.  B  <->  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  M ) y ) ) : ( B  X.  B
) --> B )
85, 7sylib 122 . 2  |-  ( M  e. Mgm  ->  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  M ) y ) ) : ( B  X.  B
) --> B )
9 mgmplusf.2 . . . 4  |-  .+^  =  ( +f `  M
)
101, 2, 9plusffvalg 12775 . . 3  |-  ( M  e. Mgm  ->  .+^  =  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  M
) y ) ) )
1110feq1d 5352 . 2  |-  ( M  e. Mgm  ->  (  .+^  : ( B  X.  B ) --> B  <->  ( x  e.  B ,  y  e.  B  |->  ( x ( +g  `  M ) y ) ) : ( B  X.  B
) --> B ) )
128, 11mpbird 167 1  |-  ( M  e. Mgm  ->  .+^  : ( B  X.  B ) --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   A.wral 2455    X. cxp 4624   -->wf 5212   ` cfv 5216  (class class class)co 5874    e. cmpo 5876   Basecbs 12456   +g cplusg 12530   +fcplusf 12766  Mgmcmgm 12767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-cnex 7901  ax-resscn 7902  ax-1re 7904  ax-addrcl 7907
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-inn 8918  df-2 8976  df-ndx 12459  df-slot 12460  df-base 12462  df-plusg 12543  df-plusf 12768  df-mgm 12769
This theorem is referenced by:  mgmb1mgm1  12781  mndplusf  12828
  Copyright terms: Public domain W3C validator