| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgmplusf | Unicode version | ||
| Description: The group addition function of a magma is a function into its base set. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revisd by AV, 28-Jan-2020.) |
| Ref | Expression |
|---|---|
| mgmplusf.1 |
|
| mgmplusf.2 |
|
| Ref | Expression |
|---|---|
| mgmplusf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgmplusf.1 |
. . . . . 6
| |
| 2 | eqid 2207 |
. . . . . 6
| |
| 3 | 1, 2 | mgmcl 13306 |
. . . . 5
|
| 4 | 3 | 3expb 1207 |
. . . 4
|
| 5 | 4 | ralrimivva 2590 |
. . 3
|
| 6 | eqid 2207 |
. . . 4
| |
| 7 | 6 | fmpo 6310 |
. . 3
|
| 8 | 5, 7 | sylib 122 |
. 2
|
| 9 | mgmplusf.2 |
. . . 4
| |
| 10 | 1, 2, 9 | plusffvalg 13309 |
. . 3
|
| 11 | 10 | feq1d 5432 |
. 2
|
| 12 | 8, 11 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-plusf 13302 df-mgm 13303 |
| This theorem is referenced by: mgmb1mgm1 13315 mndplusf 13380 |
| Copyright terms: Public domain | W3C validator |