ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ipndx Unicode version

Theorem ipndx 12645
Description: Index value of the df-ip 12572 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
ipndx  |-  ( .i
`  ndx )  =  8

Proof of Theorem ipndx
StepHypRef Expression
1 df-ip 12572 . 2  |-  .i  = Slot  8
2 8nn 9103 . 2  |-  8  e.  NN
31, 2ndxarg 12502 1  |-  ( .i
`  ndx )  =  8
Colors of variables: wff set class
Syntax hints:    = wceq 1363   ` cfv 5230   8c8 8993   ndxcnx 12476   .icip 12559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-sep 4135  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-cnex 7919  ax-resscn 7920  ax-1re 7922  ax-addrcl 7925
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ral 2472  df-rex 2473  df-v 2753  df-sbc 2977  df-un 3147  df-in 3149  df-ss 3156  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-br 4018  df-opab 4079  df-mpt 4080  df-id 4307  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-iota 5192  df-fun 5232  df-fv 5238  df-ov 5893  df-inn 8937  df-2 8995  df-3 8996  df-4 8997  df-5 8998  df-6 8999  df-7 9000  df-8 9001  df-ndx 12482  df-slot 12483  df-ip 12572
This theorem is referenced by:  ipndxnbasendx  12648  ipndxnplusgndx  12649  ipndxnmulrndx  12650  slotsdifipndx  12651  ipsstrd  12652  slotstnscsi  12671  slotsdnscsi  12695
  Copyright terms: Public domain W3C validator