HomeHome Intuitionistic Logic Explorer
Theorem List (p. 127 of 129)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12601-12700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Axiomax-bdsb 12601 A formula resulting from proper substitution in a bounded formula is bounded. This probably cannot be proved from the other axioms, since neither the definiens in df-sb 1704, nor probably any other equivalent formula, is syntactically bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  ph   =>    |- BOUNDED  [
 y  /  x ] ph
 
Theorembdeq 12602 Equality property for the predicate BOUNDED. (Contributed by BJ, 3-Oct-2019.)
 |-  ( ph 
 <->  ps )   =>    |-  (BOUNDED  ph 
 <-> BOUNDED  ps )
 
Theorembd0 12603 A formula equivalent to a bounded one is bounded. See also bd0r 12604. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  ph   &    |-  ( ph  <->  ps )   =>    |- BOUNDED  ps
 
Theorembd0r 12604 A formula equivalent to a bounded one is bounded. Stated with a commuted (compared with bd0 12603) biconditional in the hypothesis, to work better with definitions (
ps is the definiendum that one wants to prove bounded). (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  ph   &    |-  ( ps  <->  ph )   =>    |- BOUNDED  ps
 
Theorembdbi 12605 A biconditional between two bounded formulas is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph 
 <->  ps )
 
Theorembdstab 12606 Stability of a bounded formula is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  ph   =>    |- BOUNDED STAB  ph
 
Theorembddc 12607 Decidability of a bounded formula is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  ph   =>    |- BOUNDED DECID  ph
 
Theorembd3or 12608 A disjunction of three bounded formulas is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  ph   &    |- BOUNDED  ps   &    |- BOUNDED  ch   =>    |- BOUNDED  ( ph  \/  ps  \/  ch )
 
Theorembd3an 12609 A conjunction of three bounded formulas is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  ph   &    |- BOUNDED  ps   &    |- BOUNDED  ch   =>    |- BOUNDED  ( ph  /\  ps  /\ 
 ch )
 
Theorembdth 12610 A truth (a (closed) theorem) is a bounded formula. (Contributed by BJ, 6-Oct-2019.)
 |-  ph   =>    |- BOUNDED  ph
 
Theorembdtru 12611 The truth value T. is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED T.
 
Theorembdfal 12612 The truth value F. is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED F.
 
Theorembdnth 12613 A falsity is a bounded formula. (Contributed by BJ, 6-Oct-2019.)
 |-  -.  ph   =>    |- BOUNDED  ph
 
TheorembdnthALT 12614 Alternate proof of bdnth 12613 not using bdfal 12612. Then, bdfal 12612 can be proved from this theorem, using fal 1306. The total number of proof steps would be 17 (for bdnthALT 12614) + 3 = 20, which is more than 8 (for bdfal 12612) + 9 (for bdnth 12613) = 17. (Contributed by BJ, 6-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  -.  ph   =>    |- BOUNDED  ph
 
Theorembdxor 12615 The exclusive disjunction of two bounded formulas is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  ph   &    |- BOUNDED  ps   =>    |- BOUNDED  ( ph  \/_  ps )
 
Theorembj-bdcel 12616* Boundedness of a membership formula. (Contributed by BJ, 8-Dec-2019.)
 |- BOUNDED  y  =  A   =>    |- BOUNDED  A  e.  x
 
Theorembdab 12617 Membership in a class defined by class abstraction using a bounded formula, is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  ph   =>    |- BOUNDED  x  e.  { y  |  ph }
 
Theorembdcdeq 12618 Conditional equality of a bounded formula is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  ph   =>    |- BOUNDED CondEq ( x  =  y  ->  ph )
 
9.2.6.2  Bounded classes

In line with our definitions of classes as extensions of predicates, it is useful to define a predicate for bounded classes, which is done in df-bdc 12620. Note that this notion is only a technical device which can be used to shorten proofs of (semantic) boundedness of formulas.

As will be clear by the end of this subsection (see for instance bdop 12654), one can prove the boundedness of any concrete term using only setvars and bounded formulas, for instance,  |- BOUNDED  ph =>  |- BOUNDED 
<. { x  |  ph } ,  ( {
y ,  suc  z }  X.  <. t ,  (/) >.
) >.. The proofs are long since one has to prove boundedness at each step of the construction, without being able to prove general theorems like  |- BOUNDED  A =>  |- BOUNDED  { A }.

 
Syntaxwbdc 12619 Syntax for the predicate BOUNDED.
 wff BOUNDED  A
 
Definitiondf-bdc 12620* Define a bounded class as one such that membership in this class is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
 |-  (BOUNDED  A  <->  A. xBOUNDED  x  e.  A )
 
Theorembdceq 12621 Equality property for the predicate BOUNDED. (Contributed by BJ, 3-Oct-2019.)
 |-  A  =  B   =>    |-  (BOUNDED  A 
 <-> BOUNDED  B )
 
Theorembdceqi 12622 A class equal to a bounded one is bounded. Note the use of ax-ext 2082. See also bdceqir 12623. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   &    |-  A  =  B   =>    |- BOUNDED  B
 
Theorembdceqir 12623 A class equal to a bounded one is bounded. Stated with a commuted (compared with bdceqi 12622) equality in the hypothesis, to work better with definitions ( B is the definiendum that one wants to prove bounded; see comment of bd0r 12604). (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   &    |-  B  =  A   =>    |- BOUNDED  B
 
Theorembdel 12624* The belonging of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
 |-  (BOUNDED  A  -> BOUNDED  x  e.  A )
 
Theorembdeli 12625* Inference associated with bdel 12624. Its converse is bdelir 12626. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  x  e.  A
 
Theorembdelir 12626* Inference associated with df-bdc 12620. Its converse is bdeli 12625. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  x  e.  A   =>    |- BOUNDED  A
 
Theorembdcv 12627 A setvar is a bounded class. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  x
 
Theorembdcab 12628 A class defined by class abstraction using a bounded formula is bounded. (Contributed by BJ, 6-Oct-2019.)
 |- BOUNDED  ph   =>    |- BOUNDED  { x  |  ph }
 
Theorembdph 12629 A formula which defines (by class abstraction) a bounded class is bounded. (Contributed by BJ, 6-Oct-2019.)
 |- BOUNDED  { x  |  ph }   =>    |- BOUNDED  ph
 
Theorembds 12630* Boundedness of a formula resulting from implicit substitution in a bounded formula. Note that the proof does not use ax-bdsb 12601; therefore, using implicit instead of explicit substitution when boundedness is important, one might avoid using ax-bdsb 12601. (Contributed by BJ, 19-Nov-2019.)
 |- BOUNDED  ph   &    |-  ( x  =  y  ->  ( ph  <->  ps ) )   =>    |- BOUNDED  ps
 
Theorembdcrab 12631* A class defined by restricted abstraction from a bounded class and a bounded formula is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   &    |- BOUNDED  ph   =>    |- BOUNDED  { x  e.  A  |  ph }
 
Theorembdne 12632 Inequality of two setvars is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  x  =/=  y
 
Theorembdnel 12633* Non-membership of a setvar in a bounded formula is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  x  e/  A
 
Theorembdreu 12634* Boundedness of existential uniqueness.

Remark regarding restricted quantifiers: the formula  A. x  e.  A ph need not be bounded even if 
A and  ph are. Indeed,  _V is bounded by bdcvv 12636, and  |-  ( A. x  e. 
_V ph  <->  A. x ph ) (in minimal propositional calculus), so by bd0 12603, if  A. x  e. 
_V ph were bounded when  ph is bounded, then  A. x ph would be bounded as well when  ph is bounded, which is not the case. The same remark holds with  E. ,  E! ,  E*. (Contributed by BJ, 16-Oct-2019.)

 |- BOUNDED  ph   =>    |- BOUNDED  E! x  e.  y  ph
 
Theorembdrmo 12635* Boundedness of existential at-most-one. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  ph   =>    |- BOUNDED  E* x  e.  y  ph
 
Theorembdcvv 12636 The universal class is bounded. The formulation may sound strange, but recall that here, "bounded" means "Δ0". (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  _V
 
Theorembdsbc 12637 A formula resulting from proper substitution of a setvar for a setvar in a bounded formula is bounded. See also bdsbcALT 12638. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  ph   =>    |- BOUNDED  [. y  /  x ]. ph
 
TheorembdsbcALT 12638 Alternate proof of bdsbc 12637. (Contributed by BJ, 16-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- BOUNDED  ph   =>    |- BOUNDED  [. y  /  x ]. ph
 
Theorembdccsb 12639 A class resulting from proper substitution of a setvar for a setvar in a bounded class is bounded. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  [_ y  /  x ]_ A
 
Theorembdcdif 12640 The difference of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   &    |- BOUNDED  B   =>    |- BOUNDED  ( A 
 \  B )
 
Theorembdcun 12641 The union of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   &    |- BOUNDED  B   =>    |- BOUNDED  ( A  u.  B )
 
Theorembdcin 12642 The intersection of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   &    |- BOUNDED  B   =>    |- BOUNDED  ( A  i^i  B )
 
Theorembdss 12643 The inclusion of a setvar in a bounded class is a bounded formula. Note: apparently, we cannot prove from the present axioms that equality of two bounded classes is a bounded formula. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  x  C_  A
 
Theorembdcnul 12644 The empty class is bounded. See also bdcnulALT 12645. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  (/)
 
TheorembdcnulALT 12645 Alternate proof of bdcnul 12644. Similarly, for the next few theorems proving boundedness of a class, one can either use their definition followed by bdceqir 12623, or use the corresponding characterizations of its elements followed by bdelir 12626. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- BOUNDED  (/)
 
Theorembdeq0 12646 Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.)
 |- BOUNDED  x  =  (/)
 
Theorembj-bd0el 12647 Boundedness of the formula "the empty set belongs to the setvar  x". (Contributed by BJ, 30-Nov-2019.)
 |- BOUNDED  (/)  e.  x
 
Theorembdcpw 12648 The power class of a bounded class is bounded. (Contributed by BJ, 3-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  ~P A
 
Theorembdcsn 12649 The singleton of a setvar is bounded. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  { x }
 
Theorembdcpr 12650 The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  { x ,  y }
 
Theorembdctp 12651 The unordered triple of three setvars is bounded. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  { x ,  y ,  z }
 
Theorembdsnss 12652* Inclusion of a singleton of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  { x }  C_  A
 
Theorembdvsn 12653* Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  x  =  { y }
 
Theorembdop 12654 The ordered pair of two setvars is a bounded class. (Contributed by BJ, 21-Nov-2019.)
 |- BOUNDED 
 <. x ,  y >.
 
Theorembdcuni 12655 The union of a setvar is a bounded class. (Contributed by BJ, 15-Oct-2019.)
 |- BOUNDED 
 U. x
 
Theorembdcint 12656 The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED 
 |^| x
 
Theorembdciun 12657* The indexed union of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  U_ x  e.  y  A
 
Theorembdciin 12658* The indexed intersection of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED  A   =>    |- BOUNDED  |^|_ x  e.  y  A
 
Theorembdcsuc 12659 The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
 |- BOUNDED 
 suc  x
 
Theorembdeqsuc 12660* Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.)
 |- BOUNDED  x  =  suc  y
 
Theorembj-bdsucel 12661 Boundedness of the formula "the successor of the setvar  x belongs to the setvar  y". (Contributed by BJ, 30-Nov-2019.)
 |- BOUNDED  suc  x  e.  y
 
Theorembdcriota 12662* A class given by a restricted definition binder is bounded, under the given hypotheses. (Contributed by BJ, 24-Nov-2019.)
 |- BOUNDED  ph   &    |-  E! x  e.  y  ph   =>    |- BOUNDED  ( iota_ x  e.  y  ph )
 
9.2.7  CZF: Bounded separation

In this section, we state the axiom scheme of bounded separation, which is part of CZF set theory.

 
Axiomax-bdsep 12663* Axiom scheme of bounded (or restricted, or Δ0) separation. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. For the full axiom of separation, see ax-sep 3986. (Contributed by BJ, 5-Oct-2019.)
 |- BOUNDED  ph   =>    |- 
 A. a E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
 )
 
Theorembdsep1 12664* Version of ax-bdsep 12663 without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.)
 |- BOUNDED  ph   =>    |- 
 E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph ) )
 
Theorembdsep2 12665* Version of ax-bdsep 12663 with one disjoint variable condition removed and without initial universal quantifier. Use bdsep1 12664 when sufficient. (Contributed by BJ, 5-Oct-2019.)
 |- BOUNDED  ph   =>    |- 
 E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph ) )
 
Theorembdsepnft 12666* Closed form of bdsepnf 12667. Version of ax-bdsep 12663 with one disjoint variable condition removed, the other disjoint variable condition replaced by a non-freeness antecedent, and without initial universal quantifier. Use bdsep1 12664 when sufficient. (Contributed by BJ, 19-Oct-2019.)
 |- BOUNDED  ph   =>    |-  ( A. x F/ b ph  ->  E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph )
 ) )
 
Theorembdsepnf 12667* Version of ax-bdsep 12663 with one disjoint variable condition removed, the other disjoint variable condition replaced by a non-freeness hypothesis, and without initial universal quantifier. See also bdsepnfALT 12668. Use bdsep1 12664 when sufficient. (Contributed by BJ, 5-Oct-2019.)
 |-  F/ b ph   &    |- BOUNDED  ph   =>    |- 
 E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph ) )
 
TheorembdsepnfALT 12668* Alternate proof of bdsepnf 12667, not using bdsepnft 12666. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  F/ b ph   &    |- BOUNDED  ph   =>    |- 
 E. b A. x ( x  e.  b  <->  ( x  e.  a  /\  ph ) )
 
Theorembdzfauscl 12669* Closed form of the version of zfauscl 3988 for bounded formulas using bounded separation. (Contributed by BJ, 13-Nov-2019.)
 |- BOUNDED  ph   =>    |-  ( A  e.  V  ->  E. y A. x ( x  e.  y  <->  ( x  e.  A  /\  ph ) ) )
 
Theorembdbm1.3ii 12670* Bounded version of bm1.3ii 3989. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |- BOUNDED  ph   &    |-  E. x A. y ( ph  ->  y  e.  x )   =>    |-  E. x A. y ( y  e.  x  <->  ph )
 
Theorembj-axemptylem 12671* Lemma for bj-axempty 12672 and bj-axempty2 12673. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 3994 instead. (New usage is discouraged.)
 |-  E. x A. y ( y  e.  x  -> F.  )
 
Theorembj-axempty 12672* Axiom of the empty set from bounded separation. It is provable from bounded separation since the intuitionistic FOL used in iset.mm assumes a nonempty universe. See axnul 3993. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 3994 instead. (New usage is discouraged.)
 |-  E. x A. y  e.  x F.
 
Theorembj-axempty2 12673* Axiom of the empty set from bounded separation, alternate version to bj-axempty 12672. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 3994 instead. (New usage is discouraged.)
 |-  E. x A. y  -.  y  e.  x
 
Theorembj-nalset 12674* nalset 3998 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  -.  E. x A. y  y  e.  x
 
Theorembj-vprc 12675 vprc 4000 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  -.  _V  e.  _V
 
Theorembj-nvel 12676 nvel 4001 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  -.  _V  e.  A
 
Theorembj-vnex 12677 vnex 3999 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  -.  E. x  x  =  _V
 
Theorembdinex1 12678 Bounded version of inex1 4002. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  B   &    |-  A  e.  _V   =>    |-  ( A  i^i  B )  e. 
 _V
 
Theorembdinex2 12679 Bounded version of inex2 4003. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  B   &    |-  A  e.  _V   =>    |-  ( B  i^i  A )  e. 
 _V
 
Theorembdinex1g 12680 Bounded version of inex1g 4004. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  B   =>    |-  ( A  e.  V  ->  ( A  i^i  B )  e.  _V )
 
Theorembdssex 12681 Bounded version of ssex 4005. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   &    |-  B  e.  _V   =>    |-  ( A  C_  B  ->  A  e.  _V )
 
Theorembdssexi 12682 Bounded version of ssexi 4006. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   &    |-  B  e.  _V   &    |-  A  C_  B   =>    |-  A  e.  _V
 
Theorembdssexg 12683 Bounded version of ssexg 4007. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   =>    |-  ( ( A  C_  B  /\  B  e.  C )  ->  A  e.  _V )
 
Theorembdssexd 12684 Bounded version of ssexd 4008. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  ( ph  ->  B  e.  C )   &    |-  ( ph  ->  A  C_  B )   &    |- BOUNDED  A   =>    |-  ( ph  ->  A  e.  _V )
 
Theorembdrabexg 12685* Bounded version of rabexg 4011. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  ph   &    |- BOUNDED  A   =>    |-  ( A  e.  V  ->  { x  e.  A  |  ph }  e.  _V )
 
Theorembj-inex 12686 The intersection of two sets is a set, from bounded separation. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  V  /\  B  e.  W ) 
 ->  ( A  i^i  B )  e.  _V )
 
Theorembj-intexr 12687 intexr 4015 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  ( |^| A  e.  _V  ->  A  =/=  (/) )
 
Theorembj-intnexr 12688 intnexr 4016 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
 |-  ( |^| A  =  _V  ->  -. 
 |^| A  e.  _V )
 
Theorembj-zfpair2 12689 Proof of zfpair2 4070 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |-  { x ,  y }  e.  _V
 
Theorembj-prexg 12690 Proof of prexg 4071 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  V  /\  B  e.  W ) 
 ->  { A ,  B }  e.  _V )
 
Theorembj-snexg 12691 snexg 4048 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  { A }  e.  _V )
 
Theorembj-snex 12692 snex 4049 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
 |-  A  e.  _V   =>    |- 
 { A }  e.  _V
 
Theorembj-sels 12693* If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.)
 |-  ( A  e.  V  ->  E. x  A  e.  x )
 
Theorembj-axun2 12694* axun2 4295 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
 |-  E. y A. z ( z  e.  y  <->  E. w ( z  e.  w  /\  w  e.  x ) )
 
Theorembj-uniex2 12695* uniex2 4296 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.)
 |-  E. y  y  =  U. x
 
Theorembj-uniex 12696 uniex 4297 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  A  e.  _V   =>    |- 
 U. A  e.  _V
 
Theorembj-uniexg 12697 uniexg 4299 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  U. A  e.  _V )
 
Theorembj-unex 12698 unex 4300 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |-  ( A  u.  B )  e. 
 _V
 
Theorembdunexb 12699 Bounded version of unexb 4301. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |- BOUNDED  A   &    |- BOUNDED  B   =>    |-  ( ( A  e.  _V 
 /\  B  e.  _V ) 
 <->  ( A  u.  B )  e.  _V )
 
Theorembj-unexg 12700 unexg 4302 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
 |-  (
 ( A  e.  V  /\  B  e.  W ) 
 ->  ( A  u.  B )  e.  _V )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12832
  Copyright terms: Public domain < Previous  Next >