ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istpsi Unicode version

Theorem istpsi 13542
Description: Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.)
Hypotheses
Ref Expression
istpsi.b  |-  ( Base `  K )  =  A
istpsi.j  |-  ( TopOpen `  K )  =  J
istpsi.1  |-  A  = 
U. J
istpsi.2  |-  J  e. 
Top
Assertion
Ref Expression
istpsi  |-  K  e. 
TopSp

Proof of Theorem istpsi
StepHypRef Expression
1 istpsi.2 . 2  |-  J  e. 
Top
2 istpsi.1 . 2  |-  A  = 
U. J
3 istpsi.b . . . 4  |-  ( Base `  K )  =  A
43eqcomi 2181 . . 3  |-  A  =  ( Base `  K
)
5 istpsi.j . . . 4  |-  ( TopOpen `  K )  =  J
65eqcomi 2181 . . 3  |-  J  =  ( TopOpen `  K )
74, 6istps2 13536 . 2  |-  ( K  e.  TopSp 
<->  ( J  e.  Top  /\  A  =  U. J
) )
81, 2, 7mpbir2an 942 1  |-  K  e. 
TopSp
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148   U.cuni 3810   ` cfv 5217   Basecbs 12462   TopOpenctopn 12689   Topctop 13500   TopSpctps 13533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-5 8981  df-6 8982  df-7 8983  df-8 8984  df-9 8985  df-ndx 12465  df-slot 12466  df-base 12468  df-tset 12555  df-rest 12690  df-topn 12691  df-top 13501  df-topon 13514  df-topsp 13534
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator