Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > istpsi | GIF version |
Description: Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.) |
Ref | Expression |
---|---|
istpsi.b | ⊢ (Base‘𝐾) = 𝐴 |
istpsi.j | ⊢ (TopOpen‘𝐾) = 𝐽 |
istpsi.1 | ⊢ 𝐴 = ∪ 𝐽 |
istpsi.2 | ⊢ 𝐽 ∈ Top |
Ref | Expression |
---|---|
istpsi | ⊢ 𝐾 ∈ TopSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istpsi.2 | . 2 ⊢ 𝐽 ∈ Top | |
2 | istpsi.1 | . 2 ⊢ 𝐴 = ∪ 𝐽 | |
3 | istpsi.b | . . . 4 ⊢ (Base‘𝐾) = 𝐴 | |
4 | 3 | eqcomi 2161 | . . 3 ⊢ 𝐴 = (Base‘𝐾) |
5 | istpsi.j | . . . 4 ⊢ (TopOpen‘𝐾) = 𝐽 | |
6 | 5 | eqcomi 2161 | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) |
7 | 4, 6 | istps2 12391 | . 2 ⊢ (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = ∪ 𝐽)) |
8 | 1, 2, 7 | mpbir2an 927 | 1 ⊢ 𝐾 ∈ TopSp |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 ∈ wcel 2128 ∪ cuni 3772 ‘cfv 5167 Basecbs 12150 TopOpenctopn 12312 Topctop 12355 TopSpctps 12388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-cnex 7806 ax-resscn 7807 ax-1re 7809 ax-addrcl 7812 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-inn 8817 df-2 8875 df-3 8876 df-4 8877 df-5 8878 df-6 8879 df-7 8880 df-8 8881 df-9 8882 df-ndx 12153 df-slot 12154 df-base 12156 df-tset 12231 df-rest 12313 df-topn 12314 df-top 12356 df-topon 12369 df-topsp 12389 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |