ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  istpsi GIF version

Theorem istpsi 14383
Description: Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.)
Hypotheses
Ref Expression
istpsi.b (Base‘𝐾) = 𝐴
istpsi.j (TopOpen‘𝐾) = 𝐽
istpsi.1 𝐴 = 𝐽
istpsi.2 𝐽 ∈ Top
Assertion
Ref Expression
istpsi 𝐾 ∈ TopSp

Proof of Theorem istpsi
StepHypRef Expression
1 istpsi.2 . 2 𝐽 ∈ Top
2 istpsi.1 . 2 𝐴 = 𝐽
3 istpsi.b . . . 4 (Base‘𝐾) = 𝐴
43eqcomi 2200 . . 3 𝐴 = (Base‘𝐾)
5 istpsi.j . . . 4 (TopOpen‘𝐾) = 𝐽
65eqcomi 2200 . . 3 𝐽 = (TopOpen‘𝐾)
74, 6istps2 14377 . 2 (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = 𝐽))
81, 2, 7mpbir2an 944 1 𝐾 ∈ TopSp
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167   cuni 3840  cfv 5259  Basecbs 12705  TopOpenctopn 12944  Topctop 14341  TopSpctps 14374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7989  ax-resscn 7990  ax-1re 7992  ax-addrcl 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-ndx 12708  df-slot 12709  df-base 12711  df-tset 12801  df-rest 12945  df-topn 12946  df-top 14342  df-topon 14355  df-topsp 14375
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator