ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltpsg Unicode version

Theorem eltpsg 12579
Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
eltpsi.k  |-  K  =  { <. ( Base `  ndx ) ,  A >. , 
<. (TopSet `  ndx ) ,  J >. }
Assertion
Ref Expression
eltpsg  |-  ( J  e.  (TopOn `  A
)  ->  K  e.  TopSp
)

Proof of Theorem eltpsg
StepHypRef Expression
1 toponmax 12564 . . . . 5  |-  ( J  e.  (TopOn `  A
)  ->  A  e.  J )
2 eltpsi.k . . . . . 6  |-  K  =  { <. ( Base `  ndx ) ,  A >. , 
<. (TopSet `  ndx ) ,  J >. }
3 df-tset 12412 . . . . . 6  |- TopSet  = Slot  9
4 1lt9 9052 . . . . . 6  |-  1  <  9
5 9nn 9016 . . . . . 6  |-  9  e.  NN
62, 3, 4, 52stropg 12433 . . . . 5  |-  ( ( A  e.  J  /\  J  e.  (TopOn `  A
) )  ->  J  =  (TopSet `  K )
)
71, 6mpancom 419 . . . 4  |-  ( J  e.  (TopOn `  A
)  ->  J  =  (TopSet `  K ) )
82, 3, 4, 52strbasg 12432 . . . . . 6  |-  ( ( A  e.  J  /\  J  e.  (TopOn `  A
) )  ->  A  =  ( Base `  K
) )
91, 8mpancom 419 . . . . 5  |-  ( J  e.  (TopOn `  A
)  ->  A  =  ( Base `  K )
)
109fveq2d 5484 . . . 4  |-  ( J  e.  (TopOn `  A
)  ->  (TopOn `  A
)  =  (TopOn `  ( Base `  K )
) )
117, 10eleq12d 2235 . . 3  |-  ( J  e.  (TopOn `  A
)  ->  ( J  e.  (TopOn `  A )  <->  (TopSet `  K )  e.  (TopOn `  ( Base `  K
) ) ) )
1211ibi 175 . 2  |-  ( J  e.  (TopOn `  A
)  ->  (TopSet `  K
)  e.  (TopOn `  ( Base `  K )
) )
13 eqid 2164 . . 3  |-  ( Base `  K )  =  (
Base `  K )
14 eqid 2164 . . 3  |-  (TopSet `  K )  =  (TopSet `  K )
1513, 14tsettps 12577 . 2  |-  ( (TopSet `  K )  e.  (TopOn `  ( Base `  K
) )  ->  K  e.  TopSp )
1612, 15syl 14 1  |-  ( J  e.  (TopOn `  A
)  ->  K  e.  TopSp
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1342    e. wcel 2135   {cpr 3571   <.cop 3573   ` cfv 5182   9c9 8906   ndxcnx 12328   Basecbs 12331  TopSetcts 12399  TopOnctopon 12549   TopSpctps 12569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-pre-ltirr 7856  ax-pre-lttrn 7858  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-pnf 7926  df-mnf 7927  df-ltxr 7929  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-5 8910  df-6 8911  df-7 8912  df-8 8913  df-9 8914  df-ndx 12334  df-slot 12335  df-base 12337  df-tset 12412  df-rest 12494  df-topn 12495  df-top 12537  df-topon 12550  df-topsp 12570
This theorem is referenced by:  eltpsi  12580  stoig  12714
  Copyright terms: Public domain W3C validator