Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eltpsg | Unicode version |
Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
eltpsi.k | TopSet |
Ref | Expression |
---|---|
eltpsg | TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toponmax 13103 | . . . . 5 TopOn | |
2 | eltpsi.k | . . . . . 6 TopSet | |
3 | df-tset 12521 | . . . . . 6 TopSet Slot | |
4 | 1lt9 9096 | . . . . . 6 | |
5 | 9nn 9060 | . . . . . 6 | |
6 | 2, 3, 4, 5 | 2stropg 12542 | . . . . 5 TopOn TopSet |
7 | 1, 6 | mpancom 422 | . . . 4 TopOn TopSet |
8 | 2, 3, 4, 5 | 2strbasg 12541 | . . . . . 6 TopOn |
9 | 1, 8 | mpancom 422 | . . . . 5 TopOn |
10 | 9 | fveq2d 5511 | . . . 4 TopOn TopOn TopOn |
11 | 7, 10 | eleq12d 2246 | . . 3 TopOn TopOn TopSet TopOn |
12 | 11 | ibi 176 | . 2 TopOn TopSet TopOn |
13 | eqid 2175 | . . 3 | |
14 | eqid 2175 | . . 3 TopSet TopSet | |
15 | 13, 14 | tsettps 13116 | . 2 TopSet TopOn |
16 | 12, 15 | syl 14 | 1 TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 wcel 2146 cpr 3590 cop 3592 cfv 5208 c9 8950 cnx 12426 cbs 12429 TopSetcts 12508 TopOnctopon 13088 ctps 13108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-lttrn 7900 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-inn 8893 df-2 8951 df-3 8952 df-4 8953 df-5 8954 df-6 8955 df-7 8956 df-8 8957 df-9 8958 df-ndx 12432 df-slot 12433 df-base 12435 df-tset 12521 df-rest 12621 df-topn 12622 df-top 13076 df-topon 13089 df-topsp 13109 |
This theorem is referenced by: eltpsi 13119 stoig 13253 |
Copyright terms: Public domain | W3C validator |