ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eltpsg Unicode version

Theorem eltpsg 12246
Description: Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypothesis
Ref Expression
eltpsi.k  |-  K  =  { <. ( Base `  ndx ) ,  A >. , 
<. (TopSet `  ndx ) ,  J >. }
Assertion
Ref Expression
eltpsg  |-  ( J  e.  (TopOn `  A
)  ->  K  e.  TopSp
)

Proof of Theorem eltpsg
StepHypRef Expression
1 toponmax 12231 . . . . 5  |-  ( J  e.  (TopOn `  A
)  ->  A  e.  J )
2 eltpsi.k . . . . . 6  |-  K  =  { <. ( Base `  ndx ) ,  A >. , 
<. (TopSet `  ndx ) ,  J >. }
3 df-tset 12079 . . . . . 6  |- TopSet  = Slot  9
4 1lt9 8948 . . . . . 6  |-  1  <  9
5 9nn 8912 . . . . . 6  |-  9  e.  NN
62, 3, 4, 52stropg 12100 . . . . 5  |-  ( ( A  e.  J  /\  J  e.  (TopOn `  A
) )  ->  J  =  (TopSet `  K )
)
71, 6mpancom 419 . . . 4  |-  ( J  e.  (TopOn `  A
)  ->  J  =  (TopSet `  K ) )
82, 3, 4, 52strbasg 12099 . . . . . 6  |-  ( ( A  e.  J  /\  J  e.  (TopOn `  A
) )  ->  A  =  ( Base `  K
) )
91, 8mpancom 419 . . . . 5  |-  ( J  e.  (TopOn `  A
)  ->  A  =  ( Base `  K )
)
109fveq2d 5433 . . . 4  |-  ( J  e.  (TopOn `  A
)  ->  (TopOn `  A
)  =  (TopOn `  ( Base `  K )
) )
117, 10eleq12d 2211 . . 3  |-  ( J  e.  (TopOn `  A
)  ->  ( J  e.  (TopOn `  A )  <->  (TopSet `  K )  e.  (TopOn `  ( Base `  K
) ) ) )
1211ibi 175 . 2  |-  ( J  e.  (TopOn `  A
)  ->  (TopSet `  K
)  e.  (TopOn `  ( Base `  K )
) )
13 eqid 2140 . . 3  |-  ( Base `  K )  =  (
Base `  K )
14 eqid 2140 . . 3  |-  (TopSet `  K )  =  (TopSet `  K )
1513, 14tsettps 12244 . 2  |-  ( (TopSet `  K )  e.  (TopOn `  ( Base `  K
) )  ->  K  e.  TopSp )
1612, 15syl 14 1  |-  ( J  e.  (TopOn `  A
)  ->  K  e.  TopSp
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 1481   {cpr 3533   <.cop 3535   ` cfv 5131   9c9 8802   ndxcnx 11995   Basecbs 11998  TopSetcts 12066  TopOnctopon 12216   TopSpctps 12236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-pre-ltirr 7756  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-pnf 7826  df-mnf 7827  df-ltxr 7829  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-5 8806  df-6 8807  df-7 8808  df-8 8809  df-9 8810  df-ndx 12001  df-slot 12002  df-base 12004  df-tset 12079  df-rest 12161  df-topn 12162  df-top 12204  df-topon 12217  df-topsp 12237
This theorem is referenced by:  eltpsi  12247  stoig  12381
  Copyright terms: Public domain W3C validator