ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  le2addd Unicode version

Theorem le2addd 8710
Description: Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
ltnegd.2  |-  ( ph  ->  B  e.  RR )
ltadd1d.3  |-  ( ph  ->  C  e.  RR )
lt2addd.4  |-  ( ph  ->  D  e.  RR )
le2addd.5  |-  ( ph  ->  A  <_  C )
le2addd.6  |-  ( ph  ->  B  <_  D )
Assertion
Ref Expression
le2addd  |-  ( ph  ->  ( A  +  B
)  <_  ( C  +  D ) )

Proof of Theorem le2addd
StepHypRef Expression
1 le2addd.5 . 2  |-  ( ph  ->  A  <_  C )
2 le2addd.6 . 2  |-  ( ph  ->  B  <_  D )
3 leidd.1 . . 3  |-  ( ph  ->  A  e.  RR )
4 ltnegd.2 . . 3  |-  ( ph  ->  B  e.  RR )
5 ltadd1d.3 . . 3  |-  ( ph  ->  C  e.  RR )
6 lt2addd.4 . . 3  |-  ( ph  ->  D  e.  RR )
7 le2add 8591 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <_  D
)  ->  ( A  +  B )  <_  ( C  +  D )
) )
83, 4, 5, 6, 7syl22anc 1272 . 2  |-  ( ph  ->  ( ( A  <_  C  /\  B  <_  D
)  ->  ( A  +  B )  <_  ( C  +  D )
) )
91, 2, 8mp2and 433 1  |-  ( ph  ->  ( A  +  B
)  <_  ( C  +  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   RRcr 7998    + caddc 8002    <_ cle 8182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-pre-ltwlin 8112  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-cnv 4727  df-iota 5278  df-fv 5326  df-ov 6004  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187
This theorem is referenced by:  4sqlem11  12924  4sqlem12  12925  4sqlem15  12928  4sqlem16  12929  lgsdirprm  15713  lgseisenlem2  15750  2sqlem8  15802
  Copyright terms: Public domain W3C validator