Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > le2add | Unicode version |
Description: Adding both sides of two 'less than or equal to' relations. (Contributed by NM, 17-Apr-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
le2add |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 519 | . . . 4 | |
2 | simprl 521 | . . . 4 | |
3 | simplr 520 | . . . 4 | |
4 | leadd1 8328 | . . . 4 | |
5 | 1, 2, 3, 4 | syl3anc 1228 | . . 3 |
6 | simprr 522 | . . . 4 | |
7 | leadd2 8329 | . . . 4 | |
8 | 3, 6, 2, 7 | syl3anc 1228 | . . 3 |
9 | 5, 8 | anbi12d 465 | . 2 |
10 | 1, 3 | readdcld 7928 | . . 3 |
11 | 2, 3 | readdcld 7928 | . . 3 |
12 | 2, 6 | readdcld 7928 | . . 3 |
13 | letr 7981 | . . 3 | |
14 | 10, 11, 12, 13 | syl3anc 1228 | . 2 |
15 | 9, 14 | sylbid 149 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2136 class class class wbr 3982 (class class class)co 5842 cr 7752 caddc 7756 cle 7934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-pre-ltwlin 7866 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-iota 5153 df-fv 5196 df-ov 5845 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 |
This theorem is referenced by: addge0 8349 le2addi 8409 le2addd 8461 |
Copyright terms: Public domain | W3C validator |