ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  le2add Unicode version

Theorem le2add 8587
Description: Adding both sides of two 'less than or equal to' relations. (Contributed by NM, 17-Apr-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
le2add  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <_  D
)  ->  ( A  +  B )  <_  ( C  +  D )
) )

Proof of Theorem le2add
StepHypRef Expression
1 simpll 527 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  A  e.  RR )
2 simprl 529 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  C  e.  RR )
3 simplr 528 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  B  e.  RR )
4 leadd1 8573 . . . 4  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  B  e.  RR )  ->  ( A  <_  C  <->  ( A  +  B )  <_  ( C  +  B )
) )
51, 2, 3, 4syl3anc 1271 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  <_  C  <->  ( A  +  B )  <_  ( C  +  B ) ) )
6 simprr 531 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  D  e.  RR )
7 leadd2 8574 . . . 4  |-  ( ( B  e.  RR  /\  D  e.  RR  /\  C  e.  RR )  ->  ( B  <_  D  <->  ( C  +  B )  <_  ( C  +  D )
) )
83, 6, 2, 7syl3anc 1271 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( B  <_  D  <->  ( C  +  B )  <_  ( C  +  D ) ) )
95, 8anbi12d 473 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <_  D
)  <->  ( ( A  +  B )  <_ 
( C  +  B
)  /\  ( C  +  B )  <_  ( C  +  D )
) ) )
101, 3readdcld 8172 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  +  B
)  e.  RR )
112, 3readdcld 8172 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  +  B
)  e.  RR )
122, 6readdcld 8172 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  +  D
)  e.  RR )
13 letr 8225 . . 3  |-  ( ( ( A  +  B
)  e.  RR  /\  ( C  +  B
)  e.  RR  /\  ( C  +  D
)  e.  RR )  ->  ( ( ( A  +  B )  <_  ( C  +  B )  /\  ( C  +  B )  <_  ( C  +  D
) )  ->  ( A  +  B )  <_  ( C  +  D
) ) )
1410, 11, 12, 13syl3anc 1271 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( ( A  +  B )  <_ 
( C  +  B
)  /\  ( C  +  B )  <_  ( C  +  D )
)  ->  ( A  +  B )  <_  ( C  +  D )
) )
159, 14sylbid 150 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <_  D
)  ->  ( A  +  B )  <_  ( C  +  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   class class class wbr 4082  (class class class)co 6000   RRcr 7994    + caddc 7998    <_ cle 8178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0id 8103  ax-rnegex 8104  ax-pre-ltwlin 8108  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-iota 5277  df-fv 5325  df-ov 6003  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183
This theorem is referenced by:  addge0  8594  le2addi  8654  le2addd  8706  swrdccatin2  11256
  Copyright terms: Public domain W3C validator