ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  le2add Unicode version

Theorem le2add 8552
Description: Adding both sides of two 'less than or equal to' relations. (Contributed by NM, 17-Apr-2005.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
le2add  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <_  D
)  ->  ( A  +  B )  <_  ( C  +  D )
) )

Proof of Theorem le2add
StepHypRef Expression
1 simpll 527 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  A  e.  RR )
2 simprl 529 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  C  e.  RR )
3 simplr 528 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  B  e.  RR )
4 leadd1 8538 . . . 4  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  B  e.  RR )  ->  ( A  <_  C  <->  ( A  +  B )  <_  ( C  +  B )
) )
51, 2, 3, 4syl3anc 1250 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  <_  C  <->  ( A  +  B )  <_  ( C  +  B ) ) )
6 simprr 531 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  D  e.  RR )
7 leadd2 8539 . . . 4  |-  ( ( B  e.  RR  /\  D  e.  RR  /\  C  e.  RR )  ->  ( B  <_  D  <->  ( C  +  B )  <_  ( C  +  D )
) )
83, 6, 2, 7syl3anc 1250 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( B  <_  D  <->  ( C  +  B )  <_  ( C  +  D ) ) )
95, 8anbi12d 473 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <_  D
)  <->  ( ( A  +  B )  <_ 
( C  +  B
)  /\  ( C  +  B )  <_  ( C  +  D )
) ) )
101, 3readdcld 8137 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  +  B
)  e.  RR )
112, 3readdcld 8137 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  +  B
)  e.  RR )
122, 6readdcld 8137 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( C  +  D
)  e.  RR )
13 letr 8190 . . 3  |-  ( ( ( A  +  B
)  e.  RR  /\  ( C  +  B
)  e.  RR  /\  ( C  +  D
)  e.  RR )  ->  ( ( ( A  +  B )  <_  ( C  +  B )  /\  ( C  +  B )  <_  ( C  +  D
) )  ->  ( A  +  B )  <_  ( C  +  D
) ) )
1410, 11, 12, 13syl3anc 1250 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( ( A  +  B )  <_ 
( C  +  B
)  /\  ( C  +  B )  <_  ( C  +  D )
)  ->  ( A  +  B )  <_  ( C  +  D )
) )
159, 14sylbid 150 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( A  <_  C  /\  B  <_  D
)  ->  ( A  +  B )  <_  ( C  +  D )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   RRcr 7959    + caddc 7963    <_ cle 8143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069  ax-pre-ltwlin 8073  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-iota 5251  df-fv 5298  df-ov 5970  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148
This theorem is referenced by:  addge0  8559  le2addi  8619  le2addd  8671  swrdccatin2  11220
  Copyright terms: Public domain W3C validator