| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > le2addd | GIF version | ||
| Description: Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| lt2addd.4 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| le2addd.5 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| le2addd.6 | ⊢ (𝜑 → 𝐵 ≤ 𝐷) |
| Ref | Expression |
|---|---|
| le2addd | ⊢ (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | le2addd.5 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
| 2 | le2addd.6 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐷) | |
| 3 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 6 | lt2addd.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 7 | le2add 8552 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))) | |
| 8 | 3, 4, 5, 6, 7 | syl22anc 1251 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))) |
| 9 | 1, 2, 8 | mp2and 433 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2178 class class class wbr 4059 (class class class)co 5967 ℝcr 7959 + caddc 7963 ≤ cle 8143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-pre-ltwlin 8073 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-iota 5251 df-fv 5298 df-ov 5970 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 |
| This theorem is referenced by: 4sqlem11 12839 4sqlem12 12840 4sqlem15 12843 4sqlem16 12844 lgsdirprm 15626 lgseisenlem2 15663 2sqlem8 15715 |
| Copyright terms: Public domain | W3C validator |