ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfz1isolemsplit Unicode version

Theorem zfz1isolemsplit 10686
Description: Lemma for zfz1iso 10689. Removing one element from an integer range. (Contributed by Jim Kingdon, 8-Sep-2022.)
Hypotheses
Ref Expression
zfz1isolemsplit.xf  |-  ( ph  ->  X  e.  Fin )
zfz1isolemsplit.mx  |-  ( ph  ->  M  e.  X )
Assertion
Ref Expression
zfz1isolemsplit  |-  ( ph  ->  ( 1 ... ( `  X ) )  =  ( ( 1 ... ( `  ( X  \  { M } ) ) )  u.  {
( `  X ) } ) )

Proof of Theorem zfz1isolemsplit
StepHypRef Expression
1 1zzd 9173 . . 3  |-  ( ph  ->  1  e.  ZZ )
2 zfz1isolemsplit.xf . . . . . 6  |-  ( ph  ->  X  e.  Fin )
3 zfz1isolemsplit.mx . . . . . 6  |-  ( ph  ->  M  e.  X )
4 diffisn 6827 . . . . . 6  |-  ( ( X  e.  Fin  /\  M  e.  X )  ->  ( X  \  { M } )  e.  Fin )
52, 3, 4syl2anc 409 . . . . 5  |-  ( ph  ->  ( X  \  { M } )  e.  Fin )
6 hashcl 10632 . . . . 5  |-  ( ( X  \  { M } )  e.  Fin  ->  ( `  ( X  \  { M } ) )  e.  NN0 )
75, 6syl 14 . . . 4  |-  ( ph  ->  ( `  ( X  \  { M } ) )  e.  NN0 )
8 nn0uz 9452 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
9 1m1e0 8881 . . . . . 6  |-  ( 1  -  1 )  =  0
109fveq2i 5464 . . . . 5  |-  ( ZZ>= `  ( 1  -  1 ) )  =  (
ZZ>= `  0 )
118, 10eqtr4i 2178 . . . 4  |-  NN0  =  ( ZZ>= `  ( 1  -  1 ) )
127, 11eleqtrdi 2247 . . 3  |-  ( ph  ->  ( `  ( X  \  { M } ) )  e.  ( ZZ>= `  ( 1  -  1 ) ) )
13 fzsuc2 9959 . . 3  |-  ( ( 1  e.  ZZ  /\  ( `  ( X  \  { M } ) )  e.  ( ZZ>= `  (
1  -  1 ) ) )  ->  (
1 ... ( ( `  ( X  \  { M }
) )  +  1 ) )  =  ( ( 1 ... ( `  ( X  \  { M } ) ) )  u.  { ( ( `  ( X  \  { M } ) )  +  1 ) } ) )
141, 12, 13syl2anc 409 . 2  |-  ( ph  ->  ( 1 ... (
( `  ( X  \  { M } ) )  +  1 ) )  =  ( ( 1 ... ( `  ( X  \  { M }
) ) )  u. 
{ ( ( `  ( X  \  { M }
) )  +  1 ) } ) )
15 hashdifsn 10670 . . . . . 6  |-  ( ( X  e.  Fin  /\  M  e.  X )  ->  ( `  ( X  \  { M } ) )  =  ( ( `  X )  -  1 ) )
162, 3, 15syl2anc 409 . . . . 5  |-  ( ph  ->  ( `  ( X  \  { M } ) )  =  ( ( `  X )  -  1 ) )
1716oveq1d 5829 . . . 4  |-  ( ph  ->  ( ( `  ( X  \  { M }
) )  +  1 )  =  ( ( ( `  X )  -  1 )  +  1 ) )
18 hashcl 10632 . . . . . . 7  |-  ( X  e.  Fin  ->  ( `  X )  e.  NN0 )
192, 18syl 14 . . . . . 6  |-  ( ph  ->  ( `  X )  e.  NN0 )
2019nn0cnd 9124 . . . . 5  |-  ( ph  ->  ( `  X )  e.  CC )
21 1cnd 7873 . . . . 5  |-  ( ph  ->  1  e.  CC )
2220, 21npcand 8169 . . . 4  |-  ( ph  ->  ( ( ( `  X
)  -  1 )  +  1 )  =  ( `  X )
)
2317, 22eqtrd 2187 . . 3  |-  ( ph  ->  ( ( `  ( X  \  { M }
) )  +  1 )  =  ( `  X
) )
2423oveq2d 5830 . 2  |-  ( ph  ->  ( 1 ... (
( `  ( X  \  { M } ) )  +  1 ) )  =  ( 1 ... ( `  X )
) )
2523sneqd 3569 . . 3  |-  ( ph  ->  { ( ( `  ( X  \  { M }
) )  +  1 ) }  =  {
( `  X ) } )
2625uneq2d 3257 . 2  |-  ( ph  ->  ( ( 1 ... ( `  ( X  \  { M } ) ) )  u.  {
( ( `  ( X  \  { M }
) )  +  1 ) } )  =  ( ( 1 ... ( `  ( X  \  { M } ) ) )  u.  {
( `  X ) } ) )
2714, 24, 263eqtr3d 2195 1  |-  ( ph  ->  ( 1 ... ( `  X ) )  =  ( ( 1 ... ( `  ( X  \  { M } ) ) )  u.  {
( `  X ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 2125    \ cdif 3095    u. cun 3096   {csn 3556   ` cfv 5163  (class class class)co 5814   Fincfn 6674   0cc0 7711   1c1 7712    + caddc 7714    - cmin 8025   NN0cn0 9069   ZZcz 9146   ZZ>=cuz 9418   ...cfz 9890  ♯chash 10626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-addass 7813  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-0id 7819  ax-rnegex 7820  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-frec 6328  df-1o 6353  df-oadd 6357  df-er 6469  df-en 6675  df-dom 6676  df-fin 6677  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-inn 8813  df-n0 9070  df-z 9147  df-uz 9419  df-fz 9891  df-ihash 10627
This theorem is referenced by:  zfz1isolemiso  10687  zfz1isolem1  10688
  Copyright terms: Public domain W3C validator