ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfz1isolemsplit Unicode version

Theorem zfz1isolemsplit 10909
Description: Lemma for zfz1iso 10912. Removing one element from an integer range. (Contributed by Jim Kingdon, 8-Sep-2022.)
Hypotheses
Ref Expression
zfz1isolemsplit.xf  |-  ( ph  ->  X  e.  Fin )
zfz1isolemsplit.mx  |-  ( ph  ->  M  e.  X )
Assertion
Ref Expression
zfz1isolemsplit  |-  ( ph  ->  ( 1 ... ( `  X ) )  =  ( ( 1 ... ( `  ( X  \  { M } ) ) )  u.  {
( `  X ) } ) )

Proof of Theorem zfz1isolemsplit
StepHypRef Expression
1 1zzd 9344 . . 3  |-  ( ph  ->  1  e.  ZZ )
2 zfz1isolemsplit.xf . . . . . 6  |-  ( ph  ->  X  e.  Fin )
3 zfz1isolemsplit.mx . . . . . 6  |-  ( ph  ->  M  e.  X )
4 diffisn 6949 . . . . . 6  |-  ( ( X  e.  Fin  /\  M  e.  X )  ->  ( X  \  { M } )  e.  Fin )
52, 3, 4syl2anc 411 . . . . 5  |-  ( ph  ->  ( X  \  { M } )  e.  Fin )
6 hashcl 10852 . . . . 5  |-  ( ( X  \  { M } )  e.  Fin  ->  ( `  ( X  \  { M } ) )  e.  NN0 )
75, 6syl 14 . . . 4  |-  ( ph  ->  ( `  ( X  \  { M } ) )  e.  NN0 )
8 nn0uz 9627 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
9 1m1e0 9051 . . . . . 6  |-  ( 1  -  1 )  =  0
109fveq2i 5557 . . . . 5  |-  ( ZZ>= `  ( 1  -  1 ) )  =  (
ZZ>= `  0 )
118, 10eqtr4i 2217 . . . 4  |-  NN0  =  ( ZZ>= `  ( 1  -  1 ) )
127, 11eleqtrdi 2286 . . 3  |-  ( ph  ->  ( `  ( X  \  { M } ) )  e.  ( ZZ>= `  ( 1  -  1 ) ) )
13 fzsuc2 10145 . . 3  |-  ( ( 1  e.  ZZ  /\  ( `  ( X  \  { M } ) )  e.  ( ZZ>= `  (
1  -  1 ) ) )  ->  (
1 ... ( ( `  ( X  \  { M }
) )  +  1 ) )  =  ( ( 1 ... ( `  ( X  \  { M } ) ) )  u.  { ( ( `  ( X  \  { M } ) )  +  1 ) } ) )
141, 12, 13syl2anc 411 . 2  |-  ( ph  ->  ( 1 ... (
( `  ( X  \  { M } ) )  +  1 ) )  =  ( ( 1 ... ( `  ( X  \  { M }
) ) )  u. 
{ ( ( `  ( X  \  { M }
) )  +  1 ) } ) )
15 hashdifsn 10890 . . . . . 6  |-  ( ( X  e.  Fin  /\  M  e.  X )  ->  ( `  ( X  \  { M } ) )  =  ( ( `  X )  -  1 ) )
162, 3, 15syl2anc 411 . . . . 5  |-  ( ph  ->  ( `  ( X  \  { M } ) )  =  ( ( `  X )  -  1 ) )
1716oveq1d 5933 . . . 4  |-  ( ph  ->  ( ( `  ( X  \  { M }
) )  +  1 )  =  ( ( ( `  X )  -  1 )  +  1 ) )
18 hashcl 10852 . . . . . . 7  |-  ( X  e.  Fin  ->  ( `  X )  e.  NN0 )
192, 18syl 14 . . . . . 6  |-  ( ph  ->  ( `  X )  e.  NN0 )
2019nn0cnd 9295 . . . . 5  |-  ( ph  ->  ( `  X )  e.  CC )
21 1cnd 8035 . . . . 5  |-  ( ph  ->  1  e.  CC )
2220, 21npcand 8334 . . . 4  |-  ( ph  ->  ( ( ( `  X
)  -  1 )  +  1 )  =  ( `  X )
)
2317, 22eqtrd 2226 . . 3  |-  ( ph  ->  ( ( `  ( X  \  { M }
) )  +  1 )  =  ( `  X
) )
2423oveq2d 5934 . 2  |-  ( ph  ->  ( 1 ... (
( `  ( X  \  { M } ) )  +  1 ) )  =  ( 1 ... ( `  X )
) )
2523sneqd 3631 . . 3  |-  ( ph  ->  { ( ( `  ( X  \  { M }
) )  +  1 ) }  =  {
( `  X ) } )
2625uneq2d 3313 . 2  |-  ( ph  ->  ( ( 1 ... ( `  ( X  \  { M } ) ) )  u.  {
( ( `  ( X  \  { M }
) )  +  1 ) } )  =  ( ( 1 ... ( `  ( X  \  { M } ) ) )  u.  {
( `  X ) } ) )
2714, 24, 263eqtr3d 2234 1  |-  ( ph  ->  ( 1 ... ( `  X ) )  =  ( ( 1 ... ( `  ( X  \  { M } ) ) )  u.  {
( `  X ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164    \ cdif 3150    u. cun 3151   {csn 3618   ` cfv 5254  (class class class)co 5918   Fincfn 6794   0cc0 7872   1c1 7873    + caddc 7875    - cmin 8190   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074  ♯chash 10846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-ihash 10847
This theorem is referenced by:  zfz1isolemiso  10910  zfz1isolem1  10911
  Copyright terms: Public domain W3C validator