Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lidrididd | Unicode version |
Description: If there is a left and right identity element for any binary operation (group operation) , the left identity element (and therefore also the right identity element according to lidrideqd 12664) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023.) |
Ref | Expression |
---|---|
lidrideqd.l | |
lidrideqd.r | |
lidrideqd.li | |
lidrideqd.ri | |
lidrideqd.b | |
lidrideqd.p | |
lidrididd.o |
Ref | Expression |
---|---|
lidrididd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidrideqd.b | . 2 | |
2 | lidrididd.o | . 2 | |
3 | lidrideqd.p | . 2 | |
4 | lidrideqd.l | . 2 | |
5 | lidrideqd.li | . . 3 | |
6 | oveq2 5873 | . . . . 5 | |
7 | id 19 | . . . . 5 | |
8 | 6, 7 | eqeq12d 2190 | . . . 4 |
9 | 8 | rspcv 2835 | . . 3 |
10 | 5, 9 | mpan9 281 | . 2 |
11 | lidrideqd.ri | . . . 4 | |
12 | lidrideqd.r | . . . . 5 | |
13 | 4, 12, 5, 11 | lidrideqd 12664 | . . . 4 |
14 | oveq1 5872 | . . . . . . . 8 | |
15 | 14, 7 | eqeq12d 2190 | . . . . . . 7 |
16 | 15 | rspcv 2835 | . . . . . 6 |
17 | oveq2 5873 | . . . . . . . . 9 | |
18 | 17 | adantl 277 | . . . . . . . 8 |
19 | simpl 109 | . . . . . . . 8 | |
20 | 18, 19 | eqtrd 2208 | . . . . . . 7 |
21 | 20 | ex 115 | . . . . . 6 |
22 | 16, 21 | syl6com 35 | . . . . 5 |
23 | 22 | com23 78 | . . . 4 |
24 | 11, 13, 23 | sylc 62 | . . 3 |
25 | 24 | imp 124 | . 2 |
26 | 1, 2, 3, 4, 10, 25 | ismgmid2 12663 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 wcel 2146 wral 2453 cfv 5208 (class class class)co 5865 cbs 12427 cplusg 12491 c0g 12625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-riota 5821 df-ov 5868 df-inn 8891 df-ndx 12430 df-slot 12431 df-base 12433 df-0g 12627 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |