ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidrididd Unicode version

Theorem lidrididd 12801
Description: If there is a left and right identity element for any binary operation (group operation)  .+, the left identity element (and therefore also the right identity element according to lidrideqd 12800) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023.)
Hypotheses
Ref Expression
lidrideqd.l  |-  ( ph  ->  L  e.  B )
lidrideqd.r  |-  ( ph  ->  R  e.  B )
lidrideqd.li  |-  ( ph  ->  A. x  e.  B  ( L  .+  x )  =  x )
lidrideqd.ri  |-  ( ph  ->  A. x  e.  B  ( x  .+  R )  =  x )
lidrideqd.b  |-  B  =  ( Base `  G
)
lidrideqd.p  |-  .+  =  ( +g  `  G )
lidrididd.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
lidrididd  |-  ( ph  ->  L  =  .0.  )
Distinct variable groups:    x, B    x, L    x, R    x,  .+
Allowed substitution hints:    ph( x)    G( x)    .0. (
x)

Proof of Theorem lidrididd
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 lidrideqd.b . 2  |-  B  =  ( Base `  G
)
2 lidrididd.o . 2  |-  .0.  =  ( 0g `  G )
3 lidrideqd.p . 2  |-  .+  =  ( +g  `  G )
4 lidrideqd.l . 2  |-  ( ph  ->  L  e.  B )
5 lidrideqd.li . . 3  |-  ( ph  ->  A. x  e.  B  ( L  .+  x )  =  x )
6 oveq2 5883 . . . . 5  |-  ( x  =  y  ->  ( L  .+  x )  =  ( L  .+  y
) )
7 id 19 . . . . 5  |-  ( x  =  y  ->  x  =  y )
86, 7eqeq12d 2192 . . . 4  |-  ( x  =  y  ->  (
( L  .+  x
)  =  x  <->  ( L  .+  y )  =  y ) )
98rspcv 2838 . . 3  |-  ( y  e.  B  ->  ( A. x  e.  B  ( L  .+  x )  =  x  ->  ( L  .+  y )  =  y ) )
105, 9mpan9 281 . 2  |-  ( (
ph  /\  y  e.  B )  ->  ( L  .+  y )  =  y )
11 lidrideqd.ri . . . 4  |-  ( ph  ->  A. x  e.  B  ( x  .+  R )  =  x )
12 lidrideqd.r . . . . 5  |-  ( ph  ->  R  e.  B )
134, 12, 5, 11lidrideqd 12800 . . . 4  |-  ( ph  ->  L  =  R )
14 oveq1 5882 . . . . . . . 8  |-  ( x  =  y  ->  (
x  .+  R )  =  ( y  .+  R ) )
1514, 7eqeq12d 2192 . . . . . . 7  |-  ( x  =  y  ->  (
( x  .+  R
)  =  x  <->  ( y  .+  R )  =  y ) )
1615rspcv 2838 . . . . . 6  |-  ( y  e.  B  ->  ( A. x  e.  B  ( x  .+  R )  =  x  ->  (
y  .+  R )  =  y ) )
17 oveq2 5883 . . . . . . . . 9  |-  ( L  =  R  ->  (
y  .+  L )  =  ( y  .+  R ) )
1817adantl 277 . . . . . . . 8  |-  ( ( ( y  .+  R
)  =  y  /\  L  =  R )  ->  ( y  .+  L
)  =  ( y 
.+  R ) )
19 simpl 109 . . . . . . . 8  |-  ( ( ( y  .+  R
)  =  y  /\  L  =  R )  ->  ( y  .+  R
)  =  y )
2018, 19eqtrd 2210 . . . . . . 7  |-  ( ( ( y  .+  R
)  =  y  /\  L  =  R )  ->  ( y  .+  L
)  =  y )
2120ex 115 . . . . . 6  |-  ( ( y  .+  R )  =  y  ->  ( L  =  R  ->  ( y  .+  L )  =  y ) )
2216, 21syl6com 35 . . . . 5  |-  ( A. x  e.  B  (
x  .+  R )  =  x  ->  ( y  e.  B  ->  ( L  =  R  ->  ( y  .+  L )  =  y ) ) )
2322com23 78 . . . 4  |-  ( A. x  e.  B  (
x  .+  R )  =  x  ->  ( L  =  R  ->  (
y  e.  B  -> 
( y  .+  L
)  =  y ) ) )
2411, 13, 23sylc 62 . . 3  |-  ( ph  ->  ( y  e.  B  ->  ( y  .+  L
)  =  y ) )
2524imp 124 . 2  |-  ( (
ph  /\  y  e.  B )  ->  (
y  .+  L )  =  y )
261, 2, 3, 4, 10, 25ismgmid2 12799 1  |-  ( ph  ->  L  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   ` cfv 5217  (class class class)co 5875   Basecbs 12462   +g cplusg 12536   0gc0g 12705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-iota 5179  df-fun 5219  df-fn 5220  df-fv 5225  df-riota 5831  df-ov 5878  df-inn 8920  df-ndx 12465  df-slot 12466  df-base 12468  df-0g 12707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator