Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lidrididd | Unicode version |
Description: If there is a left and right identity element for any binary operation (group operation) , the left identity element (and therefore also the right identity element according to lidrideqd 12612) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023.) |
Ref | Expression |
---|---|
lidrideqd.l | |
lidrideqd.r | |
lidrideqd.li | |
lidrideqd.ri | |
lidrideqd.b | |
lidrideqd.p | |
lidrididd.o |
Ref | Expression |
---|---|
lidrididd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidrideqd.b | . 2 | |
2 | lidrididd.o | . 2 | |
3 | lidrideqd.p | . 2 | |
4 | lidrideqd.l | . 2 | |
5 | lidrideqd.li | . . 3 | |
6 | oveq2 5850 | . . . . 5 | |
7 | id 19 | . . . . 5 | |
8 | 6, 7 | eqeq12d 2180 | . . . 4 |
9 | 8 | rspcv 2826 | . . 3 |
10 | 5, 9 | mpan9 279 | . 2 |
11 | lidrideqd.ri | . . . 4 | |
12 | lidrideqd.r | . . . . 5 | |
13 | 4, 12, 5, 11 | lidrideqd 12612 | . . . 4 |
14 | oveq1 5849 | . . . . . . . 8 | |
15 | 14, 7 | eqeq12d 2180 | . . . . . . 7 |
16 | 15 | rspcv 2826 | . . . . . 6 |
17 | oveq2 5850 | . . . . . . . . 9 | |
18 | 17 | adantl 275 | . . . . . . . 8 |
19 | simpl 108 | . . . . . . . 8 | |
20 | 18, 19 | eqtrd 2198 | . . . . . . 7 |
21 | 20 | ex 114 | . . . . . 6 |
22 | 16, 21 | syl6com 35 | . . . . 5 |
23 | 22 | com23 78 | . . . 4 |
24 | 11, 13, 23 | sylc 62 | . . 3 |
25 | 24 | imp 123 | . 2 |
26 | 1, 2, 3, 4, 10, 25 | ismgmid2 12611 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wral 2444 cfv 5188 (class class class)co 5842 cbs 12394 cplusg 12457 c0g 12573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-riota 5798 df-ov 5845 df-inn 8858 df-ndx 12397 df-slot 12398 df-base 12400 df-0g 12575 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |