ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidrididd Unicode version

Theorem lidrididd 13289
Description: If there is a left and right identity element for any binary operation (group operation)  .+, the left identity element (and therefore also the right identity element according to lidrideqd 13288) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023.)
Hypotheses
Ref Expression
lidrideqd.l  |-  ( ph  ->  L  e.  B )
lidrideqd.r  |-  ( ph  ->  R  e.  B )
lidrideqd.li  |-  ( ph  ->  A. x  e.  B  ( L  .+  x )  =  x )
lidrideqd.ri  |-  ( ph  ->  A. x  e.  B  ( x  .+  R )  =  x )
lidrideqd.b  |-  B  =  ( Base `  G
)
lidrideqd.p  |-  .+  =  ( +g  `  G )
lidrididd.o  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
lidrididd  |-  ( ph  ->  L  =  .0.  )
Distinct variable groups:    x, B    x, L    x, R    x,  .+
Allowed substitution hints:    ph( x)    G( x)    .0. (
x)

Proof of Theorem lidrididd
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 lidrideqd.b . 2  |-  B  =  ( Base `  G
)
2 lidrididd.o . 2  |-  .0.  =  ( 0g `  G )
3 lidrideqd.p . 2  |-  .+  =  ( +g  `  G )
4 lidrideqd.l . 2  |-  ( ph  ->  L  e.  B )
5 lidrideqd.li . . 3  |-  ( ph  ->  A. x  e.  B  ( L  .+  x )  =  x )
6 oveq2 5965 . . . . 5  |-  ( x  =  y  ->  ( L  .+  x )  =  ( L  .+  y
) )
7 id 19 . . . . 5  |-  ( x  =  y  ->  x  =  y )
86, 7eqeq12d 2221 . . . 4  |-  ( x  =  y  ->  (
( L  .+  x
)  =  x  <->  ( L  .+  y )  =  y ) )
98rspcv 2877 . . 3  |-  ( y  e.  B  ->  ( A. x  e.  B  ( L  .+  x )  =  x  ->  ( L  .+  y )  =  y ) )
105, 9mpan9 281 . 2  |-  ( (
ph  /\  y  e.  B )  ->  ( L  .+  y )  =  y )
11 lidrideqd.ri . . . 4  |-  ( ph  ->  A. x  e.  B  ( x  .+  R )  =  x )
12 lidrideqd.r . . . . 5  |-  ( ph  ->  R  e.  B )
134, 12, 5, 11lidrideqd 13288 . . . 4  |-  ( ph  ->  L  =  R )
14 oveq1 5964 . . . . . . . 8  |-  ( x  =  y  ->  (
x  .+  R )  =  ( y  .+  R ) )
1514, 7eqeq12d 2221 . . . . . . 7  |-  ( x  =  y  ->  (
( x  .+  R
)  =  x  <->  ( y  .+  R )  =  y ) )
1615rspcv 2877 . . . . . 6  |-  ( y  e.  B  ->  ( A. x  e.  B  ( x  .+  R )  =  x  ->  (
y  .+  R )  =  y ) )
17 oveq2 5965 . . . . . . . . 9  |-  ( L  =  R  ->  (
y  .+  L )  =  ( y  .+  R ) )
1817adantl 277 . . . . . . . 8  |-  ( ( ( y  .+  R
)  =  y  /\  L  =  R )  ->  ( y  .+  L
)  =  ( y 
.+  R ) )
19 simpl 109 . . . . . . . 8  |-  ( ( ( y  .+  R
)  =  y  /\  L  =  R )  ->  ( y  .+  R
)  =  y )
2018, 19eqtrd 2239 . . . . . . 7  |-  ( ( ( y  .+  R
)  =  y  /\  L  =  R )  ->  ( y  .+  L
)  =  y )
2120ex 115 . . . . . 6  |-  ( ( y  .+  R )  =  y  ->  ( L  =  R  ->  ( y  .+  L )  =  y ) )
2216, 21syl6com 35 . . . . 5  |-  ( A. x  e.  B  (
x  .+  R )  =  x  ->  ( y  e.  B  ->  ( L  =  R  ->  ( y  .+  L )  =  y ) ) )
2322com23 78 . . . 4  |-  ( A. x  e.  B  (
x  .+  R )  =  x  ->  ( L  =  R  ->  (
y  e.  B  -> 
( y  .+  L
)  =  y ) ) )
2411, 13, 23sylc 62 . . 3  |-  ( ph  ->  ( y  e.  B  ->  ( y  .+  L
)  =  y ) )
2524imp 124 . 2  |-  ( (
ph  /\  y  e.  B )  ->  (
y  .+  L )  =  y )
261, 2, 3, 4, 10, 25ismgmid2 13287 1  |-  ( ph  ->  L  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   A.wral 2485   ` cfv 5280  (class class class)co 5957   Basecbs 12907   +g cplusg 12984   0gc0g 13163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-riota 5912  df-ov 5960  df-inn 9057  df-ndx 12910  df-slot 12911  df-base 12913  df-0g 13165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator