Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > lidrididd | Unicode version |
Description: If there is a left and right identity element for any binary operation (group operation) , the left identity element (and therefore also the right identity element according to lidrideqd 12635) is equal to the two-sided identity element. (Contributed by AV, 26-Dec-2023.) |
Ref | Expression |
---|---|
lidrideqd.l | |
lidrideqd.r | |
lidrideqd.li | |
lidrideqd.ri | |
lidrideqd.b | |
lidrideqd.p | |
lidrididd.o |
Ref | Expression |
---|---|
lidrididd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidrideqd.b | . 2 | |
2 | lidrididd.o | . 2 | |
3 | lidrideqd.p | . 2 | |
4 | lidrideqd.l | . 2 | |
5 | lidrideqd.li | . . 3 | |
6 | oveq2 5861 | . . . . 5 | |
7 | id 19 | . . . . 5 | |
8 | 6, 7 | eqeq12d 2185 | . . . 4 |
9 | 8 | rspcv 2830 | . . 3 |
10 | 5, 9 | mpan9 279 | . 2 |
11 | lidrideqd.ri | . . . 4 | |
12 | lidrideqd.r | . . . . 5 | |
13 | 4, 12, 5, 11 | lidrideqd 12635 | . . . 4 |
14 | oveq1 5860 | . . . . . . . 8 | |
15 | 14, 7 | eqeq12d 2185 | . . . . . . 7 |
16 | 15 | rspcv 2830 | . . . . . 6 |
17 | oveq2 5861 | . . . . . . . . 9 | |
18 | 17 | adantl 275 | . . . . . . . 8 |
19 | simpl 108 | . . . . . . . 8 | |
20 | 18, 19 | eqtrd 2203 | . . . . . . 7 |
21 | 20 | ex 114 | . . . . . 6 |
22 | 16, 21 | syl6com 35 | . . . . 5 |
23 | 22 | com23 78 | . . . 4 |
24 | 11, 13, 23 | sylc 62 | . . 3 |
25 | 24 | imp 123 | . 2 |
26 | 1, 2, 3, 4, 10, 25 | ismgmid2 12634 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 cfv 5198 (class class class)co 5853 cbs 12416 cplusg 12480 c0g 12596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-riota 5809 df-ov 5856 df-inn 8879 df-ndx 12419 df-slot 12420 df-base 12422 df-0g 12598 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |