| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lidrididd | Unicode version | ||
| Description: If there is a left and
right identity element for any binary operation
(group operation) |
| Ref | Expression |
|---|---|
| lidrideqd.l |
|
| lidrideqd.r |
|
| lidrideqd.li |
|
| lidrideqd.ri |
|
| lidrideqd.b |
|
| lidrideqd.p |
|
| lidrididd.o |
|
| Ref | Expression |
|---|---|
| lidrididd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidrideqd.b |
. 2
| |
| 2 | lidrididd.o |
. 2
| |
| 3 | lidrideqd.p |
. 2
| |
| 4 | lidrideqd.l |
. 2
| |
| 5 | lidrideqd.li |
. . 3
| |
| 6 | oveq2 5933 |
. . . . 5
| |
| 7 | id 19 |
. . . . 5
| |
| 8 | 6, 7 | eqeq12d 2211 |
. . . 4
|
| 9 | 8 | rspcv 2864 |
. . 3
|
| 10 | 5, 9 | mpan9 281 |
. 2
|
| 11 | lidrideqd.ri |
. . . 4
| |
| 12 | lidrideqd.r |
. . . . 5
| |
| 13 | 4, 12, 5, 11 | lidrideqd 13083 |
. . . 4
|
| 14 | oveq1 5932 |
. . . . . . . 8
| |
| 15 | 14, 7 | eqeq12d 2211 |
. . . . . . 7
|
| 16 | 15 | rspcv 2864 |
. . . . . 6
|
| 17 | oveq2 5933 |
. . . . . . . . 9
| |
| 18 | 17 | adantl 277 |
. . . . . . . 8
|
| 19 | simpl 109 |
. . . . . . . 8
| |
| 20 | 18, 19 | eqtrd 2229 |
. . . . . . 7
|
| 21 | 20 | ex 115 |
. . . . . 6
|
| 22 | 16, 21 | syl6com 35 |
. . . . 5
|
| 23 | 22 | com23 78 |
. . . 4
|
| 24 | 11, 13, 23 | sylc 62 |
. . 3
|
| 25 | 24 | imp 124 |
. 2
|
| 26 | 1, 2, 3, 4, 10, 25 | ismgmid2 13082 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5880 df-ov 5928 df-inn 9008 df-ndx 12706 df-slot 12707 df-base 12709 df-0g 12960 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |