ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidd Unicode version

Theorem grpidd 12969
Description: Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpidd.b  |-  ( ph  ->  B  =  ( Base `  G ) )
grpidd.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
grpidd.z  |-  ( ph  ->  .0.  e.  B )
grpidd.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
grpidd.j  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  x )
Assertion
Ref Expression
grpidd  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
Distinct variable groups:    x, G    ph, x    x,  .0.
Allowed substitution hints:    B( x)    .+ ( x)

Proof of Theorem grpidd
StepHypRef Expression
1 eqid 2193 . 2  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2193 . 2  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 eqid 2193 . 2  |-  ( +g  `  G )  =  ( +g  `  G )
4 grpidd.z . . 3  |-  ( ph  ->  .0.  e.  B )
5 grpidd.b . . 3  |-  ( ph  ->  B  =  ( Base `  G ) )
64, 5eleqtrd 2272 . 2  |-  ( ph  ->  .0.  e.  ( Base `  G ) )
75eleq2d 2263 . . . 4  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  G
) ) )
87biimpar 297 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  G )
)  ->  x  e.  B )
9 grpidd.p . . . . . 6  |-  ( ph  ->  .+  =  ( +g  `  G ) )
109adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  .+  =  ( +g  `  G ) )
1110oveqd 5936 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  (  .0.  ( +g  `  G ) x ) )
12 grpidd.i . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
1311, 12eqtr3d 2228 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  ( +g  `  G
) x )  =  x )
148, 13syldan 282 . 2  |-  ( (
ph  /\  x  e.  ( Base `  G )
)  ->  (  .0.  ( +g  `  G ) x )  =  x )
1510oveqd 5936 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  ( x ( +g  `  G )  .0.  ) )
16 grpidd.j . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  x )
1715, 16eqtr3d 2228 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
x ( +g  `  G
)  .0.  )  =  x )
188, 17syldan 282 . 2  |-  ( (
ph  /\  x  e.  ( Base `  G )
)  ->  ( x
( +g  `  G )  .0.  )  =  x )
191, 2, 3, 6, 14, 18ismgmid2 12966 1  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698   0gc0g 12870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-inn 8985  df-ndx 12624  df-slot 12625  df-base 12627  df-0g 12872
This theorem is referenced by:  ress0g  13027  mnd1id  13031  isgrpde  13097
  Copyright terms: Public domain W3C validator