ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidd Unicode version

Theorem grpidd 13157
Description: Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpidd.b  |-  ( ph  ->  B  =  ( Base `  G ) )
grpidd.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
grpidd.z  |-  ( ph  ->  .0.  e.  B )
grpidd.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
grpidd.j  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  x )
Assertion
Ref Expression
grpidd  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
Distinct variable groups:    x, G    ph, x    x,  .0.
Allowed substitution hints:    B( x)    .+ ( x)

Proof of Theorem grpidd
StepHypRef Expression
1 eqid 2204 . 2  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2204 . 2  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 eqid 2204 . 2  |-  ( +g  `  G )  =  ( +g  `  G )
4 grpidd.z . . 3  |-  ( ph  ->  .0.  e.  B )
5 grpidd.b . . 3  |-  ( ph  ->  B  =  ( Base `  G ) )
64, 5eleqtrd 2283 . 2  |-  ( ph  ->  .0.  e.  ( Base `  G ) )
75eleq2d 2274 . . . 4  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  G
) ) )
87biimpar 297 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  G )
)  ->  x  e.  B )
9 grpidd.p . . . . . 6  |-  ( ph  ->  .+  =  ( +g  `  G ) )
109adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  .+  =  ( +g  `  G ) )
1110oveqd 5960 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  (  .0.  ( +g  `  G ) x ) )
12 grpidd.i . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
1311, 12eqtr3d 2239 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  ( +g  `  G
) x )  =  x )
148, 13syldan 282 . 2  |-  ( (
ph  /\  x  e.  ( Base `  G )
)  ->  (  .0.  ( +g  `  G ) x )  =  x )
1510oveqd 5960 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  ( x ( +g  `  G )  .0.  ) )
16 grpidd.j . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  x )
1715, 16eqtr3d 2239 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
x ( +g  `  G
)  .0.  )  =  x )
188, 17syldan 282 . 2  |-  ( (
ph  /\  x  e.  ( Base `  G )
)  ->  ( x
( +g  `  G )  .0.  )  =  x )
191, 2, 3, 6, 14, 18ismgmid2 13154 1  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   ` cfv 5270  (class class class)co 5943   Basecbs 12774   +g cplusg 12851   0gc0g 13030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-cnex 8015  ax-resscn 8016  ax-1re 8018  ax-addrcl 8021
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-iota 5231  df-fun 5272  df-fn 5273  df-fv 5278  df-riota 5898  df-ov 5946  df-inn 9036  df-ndx 12777  df-slot 12778  df-base 12780  df-0g 13032
This theorem is referenced by:  ress0g  13217  imasmnd2  13226  mnd1id  13230  isgrpde  13296
  Copyright terms: Public domain W3C validator