ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpidd Unicode version

Theorem grpidd 13330
Description: Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpidd.b  |-  ( ph  ->  B  =  ( Base `  G ) )
grpidd.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
grpidd.z  |-  ( ph  ->  .0.  e.  B )
grpidd.i  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
grpidd.j  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  x )
Assertion
Ref Expression
grpidd  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
Distinct variable groups:    x, G    ph, x    x,  .0.
Allowed substitution hints:    B( x)    .+ ( x)

Proof of Theorem grpidd
StepHypRef Expression
1 eqid 2207 . 2  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2207 . 2  |-  ( 0g
`  G )  =  ( 0g `  G
)
3 eqid 2207 . 2  |-  ( +g  `  G )  =  ( +g  `  G )
4 grpidd.z . . 3  |-  ( ph  ->  .0.  e.  B )
5 grpidd.b . . 3  |-  ( ph  ->  B  =  ( Base `  G ) )
64, 5eleqtrd 2286 . 2  |-  ( ph  ->  .0.  e.  ( Base `  G ) )
75eleq2d 2277 . . . 4  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  G
) ) )
87biimpar 297 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  G )
)  ->  x  e.  B )
9 grpidd.p . . . . . 6  |-  ( ph  ->  .+  =  ( +g  `  G ) )
109adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  B )  ->  .+  =  ( +g  `  G ) )
1110oveqd 5984 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  (  .0.  ( +g  `  G ) x ) )
12 grpidd.i . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  .+  x )  =  x )
1311, 12eqtr3d 2242 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (  .0.  ( +g  `  G
) x )  =  x )
148, 13syldan 282 . 2  |-  ( (
ph  /\  x  e.  ( Base `  G )
)  ->  (  .0.  ( +g  `  G ) x )  =  x )
1510oveqd 5984 . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  ( x ( +g  `  G )  .0.  ) )
16 grpidd.j . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  (
x  .+  .0.  )  =  x )
1715, 16eqtr3d 2242 . . 3  |-  ( (
ph  /\  x  e.  B )  ->  (
x ( +g  `  G
)  .0.  )  =  x )
188, 17syldan 282 . 2  |-  ( (
ph  /\  x  e.  ( Base `  G )
)  ->  ( x
( +g  `  G )  .0.  )  =  x )
191, 2, 3, 6, 14, 18ismgmid2 13327 1  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   0gc0g 13203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-riota 5922  df-ov 5970  df-inn 9072  df-ndx 12950  df-slot 12951  df-base 12953  df-0g 13205
This theorem is referenced by:  ress0g  13390  imasmnd2  13399  mnd1id  13403  isgrpde  13469
  Copyright terms: Public domain W3C validator