ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmfpm Unicode version

Theorem lmfpm 12893
Description: If  F converges, then  F is a partial function. (Contributed by Mario Carneiro, 23-Dec-2013.)
Assertion
Ref Expression
lmfpm  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  ->  F  e.  ( X  ^pm  CC ) )

Proof of Theorem lmfpm
Dummy variables  y  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  (TopOn `  X ) )
21lmbr 12863 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( F
( ~~> t `  J
) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) ) )
32biimpa 294 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  -> 
( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
43simp1d 999 1  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  ->  F  e.  ( X  ^pm  CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    e. wcel 2136   A.wral 2444   E.wrex 2445   class class class wbr 3982   ran crn 4605    |` cres 4606   -->wf 5184   ` cfv 5188  (class class class)co 5842    ^pm cpm 6615   CCcc 7751   ZZ>=cuz 9466  TopOnctopon 12658   ~~> tclm 12837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-cnex 7844
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pm 6617  df-top 12646  df-topon 12659  df-lm 12840
This theorem is referenced by:  lmfss  12894
  Copyright terms: Public domain W3C validator