ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmfpm Unicode version

Theorem lmfpm 14715
Description: If  F converges, then  F is a partial function. (Contributed by Mario Carneiro, 23-Dec-2013.)
Assertion
Ref Expression
lmfpm  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  ->  F  e.  ( X  ^pm  CC ) )

Proof of Theorem lmfpm
Dummy variables  y  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 19 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  (TopOn `  X ) )
21lmbr 14685 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  ( F
( ~~> t `  J
) P  <->  ( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) ) )
32biimpa 296 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  -> 
( F  e.  ( X  ^pm  CC )  /\  P  e.  X  /\  A. u  e.  J  ( P  e.  u  ->  E. y  e.  ran  ZZ>= ( F  |`  y ) : y --> u ) ) )
43simp1d 1012 1  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) P )  ->  F  e.  ( X  ^pm  CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    e. wcel 2176   A.wral 2484   E.wrex 2485   class class class wbr 4044   ran crn 4676    |` cres 4677   -->wf 5267   ` cfv 5271  (class class class)co 5944    ^pm cpm 6736   CCcc 7923   ZZ>=cuz 9648  TopOnctopon 14482   ~~> tclm 14659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-cnex 8016
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pm 6738  df-top 14470  df-topon 14483  df-lm 14662
This theorem is referenced by:  lmfss  14716
  Copyright terms: Public domain W3C validator